These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 38683324)

  • 1. Analyses of Nuclear Reads Obtained Using Genome Skimming.
    Mirarab S; Bafna V
    Methods Mol Biol; 2024; 2744():247-265. PubMed ID: 38683324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impact of contaminants on the accuracy of genome skimming and the effectiveness of exclusion read filters.
    Rachtman E; Balaban M; Bafna V; Mirarab S
    Mol Ecol Resour; 2020 May; 20(3):. PubMed ID: 31943790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A hybrid and scalable error correction algorithm for indel and substitution errors of long reads.
    Das AK; Goswami S; Lee K; Park SJ
    BMC Genomics; 2019 Dec; 20(Suppl 11):948. PubMed ID: 31856721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. QuorUM: An Error Corrector for Illumina Reads.
    Marçais G; Yorke JA; Zimin A
    PLoS One; 2015; 10(6):e0130821. PubMed ID: 26083032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Patchwork: Alignment-Based Retrieval and Concatenation of Phylogenetic Markers from Genomic Data.
    Thalén F; Köhne CG; Bleidorn C
    Genome Biol Evol; 2023 Dec; 15(12):. PubMed ID: 38085033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Are we there yet? Benchmarking low-coverage nanopore long-read sequencing for the assembling of mitochondrial genomes using the vulnerable silky shark Carcharhinus falciformis.
    Baeza JA; García-De León FJ
    BMC Genomics; 2022 Apr; 23(1):320. PubMed ID: 35459089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A linked-read approach to museomics: Higher quality de novo genome assemblies from degraded tissues.
    Colella JP; Tigano A; MacManes MD
    Mol Ecol Resour; 2020 Jul; 20(4):856-870. PubMed ID: 32153100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skmer: assembly-free and alignment-free sample identification using genome skims.
    Sarmashghi S; Bohmann K; P Gilbert MT; Bafna V; Mirarab S
    Genome Biol; 2019 Feb; 20(1):34. PubMed ID: 30760303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ARCS: scaffolding genome drafts with linked reads.
    Yeo S; Coombe L; Warren RL; Chu J; Birol I
    Bioinformatics; 2018 Mar; 34(5):725-731. PubMed ID: 29069293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ARKS: chromosome-scale scaffolding of human genome drafts with linked read kmers.
    Coombe L; Zhang J; Vandervalk BP; Chu J; Jackman SD; Birol I; Warren RL
    BMC Bioinformatics; 2018 Jun; 19(1):234. PubMed ID: 29925315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subset selection of high-depth next generation sequencing reads for de novo genome assembly using MapReduce framework.
    Fang CH; Chang YJ; Chung WC; Hsieh PH; Lin CY; Ho JM
    BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S9. PubMed ID: 26678408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid Low-Cost Assembly of the
    Solares EA; Chakraborty M; Miller DE; Kalsow S; Hall K; Perera AG; Emerson JJ; Hawley RS
    G3 (Bethesda); 2018 Oct; 8(10):3143-3154. PubMed ID: 30018084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repeat-aware modeling and correction of short read errors.
    Yang X; Aluru S; Dorman KS
    BMC Bioinformatics; 2011 Feb; 12 Suppl 1(Suppl 1):S52. PubMed ID: 21342585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NeatFreq: reference-free data reduction and coverage normalization for De Novo sequence assembly.
    McCorrison JM; Venepally P; Singh I; Fouts DE; Lasken RS; Methé BA
    BMC Bioinformatics; 2014 Nov; 15(1):357. PubMed ID: 25407910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome assembly in the telomere-to-telomere era.
    Li H; Durbin R
    Nat Rev Genet; 2024 Sep; 25(9):658-670. PubMed ID: 38649458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal compressed representation of high throughput sequence data via light assembly.
    Ginart AA; Hui J; Zhu K; Numanagić I; Courtade TA; Sahinalp SC; Tse DN
    Nat Commun; 2018 Feb; 9(1):566. PubMed ID: 29422526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assembly-free genome comparison based on next-generation sequencing reads and variable length patterns.
    Comin M; Schimd M
    BMC Bioinformatics; 2014; 15 Suppl 9(Suppl 9):S1. PubMed ID: 25252700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GAPPadder: a sensitive approach for closing gaps on draft genomes with short sequence reads.
    Chu C; Li X; Wu Y
    BMC Genomics; 2019 Jun; 20(Suppl 5):426. PubMed ID: 31167639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring, visualizing, and diagnosing reference bias with biastools.
    Lin MJ; Iyer S; Chen NC; Langmead B
    Genome Biol; 2024 Apr; 25(1):101. PubMed ID: 38641647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ψ-RA: a parallel sparse index for genomic read alignment.
    Oğuzhan Külekci M; Hon WK; Shah R; Scott Vitter J; Xu B
    BMC Genomics; 2011; 12 Suppl 2(Suppl 2):S7. PubMed ID: 21989248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.