BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38683426)

  • 1. Optimization of Ti-PA efficiently catalytic the alcoholysis of waste PET using response surface methodology.
    Wen R; Shen G; Yu Y; Zhu J; Xu S; Wei J; Huo Y
    Environ Sci Pollut Res Int; 2024 Apr; ():. PubMed ID: 38683426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of Ti-BA efficiently for the catalytic alcoholysis of waste PET using response surface methodology.
    Wen R; Shen G; Yu Y; Xu S; Wei J; Huo Y; Jiang S
    RSC Adv; 2023 Jun; 13(25):17166-17178. PubMed ID: 37304773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ti-Si composite glycol salts: depolymerization and repolymerization studies of PET.
    Yu Y; Shen G; Xu TJ; Wen R; Qiao YC; Cheng RC; Huo Y
    RSC Adv; 2023 Dec; 13(51):36337-36345. PubMed ID: 38093730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing PET Glycolysis with an Oyster Shell-Derived Catalyst Using Response Surface Methodology.
    Kim Y; Kim M; Hwang J; Im E; Moon GD
    Polymers (Basel); 2022 Feb; 14(4):. PubMed ID: 35215568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zn- and Ti-Modified Hydrotalcites for Transesterification of Dimethyl Terephthalate with Ethylene Glycol: Effect of the Metal Oxide and Catalyst Synthesis Method.
    Jadhav AL; Malkar RS; Yadav GD
    ACS Omega; 2020 Feb; 5(5):2088-2096. PubMed ID: 32064369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Smart waste management of waste cooking oil for large scale high quality biodiesel production using Sr-Ti mixed metal oxide as solid catalyst: Optimization and E-metrics studies.
    Sahani S; Roy T; Sharma YC
    Waste Manag; 2020 May; 108():189-201. PubMed ID: 32360999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Depolymerization of poly(ethylene terephthalate) waste with biomass-waste derived recyclable heterogeneous catalyst.
    Laldinpuii Z; Lalhmangaihzuala S; Pachuau Z; Vanlaldinpuia K
    Waste Manag; 2021 May; 126():1-10. PubMed ID: 33730654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization and Kinetic Evaluation for Glycolytic Depolymerization of Post-Consumer PET Waste with Sodium Methoxide.
    Javed S; Fisse J; Vogt D
    Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and thermal properties of various alcoholysis products from waste poly(ethylene terephthalate).
    Zhou X; Wang C; Fang C; Yu R; Li Y; Lei W
    Waste Manag; 2019 Feb; 85():164-174. PubMed ID: 30803569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal-oxide-doped silica nanoparticles for the catalytic glycolysis of polyethylene terephthalate.
    Imran M; Lee KG; Imtiaz Q; Kim BK; Han M; Cho BG; Kim DH
    J Nanosci Nanotechnol; 2011 Jan; 11(1):824-8. PubMed ID: 21446554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycolysis of Poly(Ethylene Terephthalate) Using Biomass-Waste Derived Recyclable Heterogeneous Catalyst.
    Lalhmangaihzuala S; Laldinpuii Z; Lalmuanpuia C; Vanlaldinpuia K
    Polymers (Basel); 2020 Dec; 13(1):. PubMed ID: 33374171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into the hydrolysis/alcoholysis/ammonolysis mechanisms of ethylene naphthalate dimer using density functional theory (DFT) method.
    Luo X; Li Q
    Environ Pollut; 2024 May; 349():123965. PubMed ID: 38614426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of reusable Ni/γ-Al
    Yan M; Yang Y; Chen F; Hantoko D; Pariatamby A; Kanchanatip E
    Environ Sci Pollut Res Int; 2023 Oct; 30(46):102560-102573. PubMed ID: 37668784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization and characterization of zeolite-titanate for ibuprofen elimination by sonication/hydrogen peroxide/ultraviolet activity.
    Farhadi N; Tabatabaie T; Ramavandi B; Amiri F
    Ultrason Sonochem; 2020 Oct; 67():105122. PubMed ID: 32276173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-Step Chemo-Microbial Degradation of Post-Consumer Polyethylene Terephthalate (PET) Plastic Enabled by a Biomass-Waste Catalyst.
    Shingwekar D; Laster H; Kemp H; Mellies JL
    Bioengineering (Basel); 2023 Oct; 10(11):. PubMed ID: 38002377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical recycling of polyester textile wastes using silver-doped zinc oxide nanoparticles: an economical solution for circular economy.
    Vinitha V; Preeyanghaa M; Anbarasu M; Neppolian B; Sivamurugan V
    Environ Sci Pollut Res Int; 2023 Jun; 30(30):75401-75416. PubMed ID: 37217818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative study on the Mn/TiO
    Zhang Y; Huang T; Xiao R; Xu H; Shen K; Zhou C
    Environ Technol; 2018 May; 39(10):1284-1294. PubMed ID: 28504006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on MoO
    Ying L; Shunwu H
    Turk J Chem; 2022; 46(6):1930-1945. PubMed ID: 37621350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sustainable PET Waste Recycling: Labels from PET Water Bottles Used as a Catalyst for the Chemical Recycling of the Same Bottles.
    Enayati M; Mohammadi S; Bouldo MG
    ACS Sustain Chem Eng; 2023 Nov; 11(46):16618-16626. PubMed ID: 38028403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of Poly(ethylene terephthalate) Catalyzed by Nonmetallic Dibasic Ionic Liquids under UV Radiation.
    Zhang R; Zheng X; Cheng X; Xu J; Li Y; Zhou Q; Xin J; Yan D; Lu X
    Materials (Basel); 2024 Mar; 17(7):. PubMed ID: 38612097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.