BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38683451)

  • 21. Immobilization of lipases on alkyl silane modified magnetic nanoparticles: effect of alkyl chain length on enzyme activity.
    Wang J; Meng G; Tao K; Feng M; Zhao X; Li Z; Xu H; Xia D; Lu JR
    PLoS One; 2012; 7(8):e43478. PubMed ID: 22952688
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Different specificity of two types of Pseudomonas lipases for C20 fatty acids with a Delta5 unsaturated double bond and their application for selective concentration of fatty acids.
    Kojima Y; Sakuradani E; Shimizu S
    J Biosci Bioeng; 2006 Jun; 101(6):496-500. PubMed ID: 16935251
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Separation and immobilization of lipase from Penicillium simplicissimum by selective adsorption on hydrophobic supports.
    Cunha AG; Fernández-Lorente G; Gutarra ML; Bevilaqua JV; Almeida RV; Paiva LM; Fernández-Lafuente R; Guisán JM; Freire DM
    Appl Biochem Biotechnol; 2009 May; 156(1-3):133-45. PubMed ID: 19037600
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of Enzyme Loading and Immobilization Conditions on the Catalytic Features of Lipase From
    Arana-Peña S; Rios NS; Carballares D; Mendez-Sanchez C; Lokha Y; Gonçalves LRB; Fernandez-Lafuente R
    Front Bioeng Biotechnol; 2020; 8():36. PubMed ID: 32181245
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Utilization of two modified layered doubled hydroxides as supports for immobilization of Candida rugosa lipase.
    Aghaei H; Ghavi M; Hashemkhani G; Keshavarz M
    Int J Biol Macromol; 2020 Nov; 162():74-83. PubMed ID: 32562729
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis of structured triacylglycerols enriched in n-3 fatty acids by immobilized microbial lipase.
    Araújo ME; Campos PR; Alberto TG; Contesini FJ; Carvalho PO
    Braz J Microbiol; 2016; 47(4):1006-1013. PubMed ID: 27528087
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lipase specificity towards eicosapentaenoic acid and docosahexaenoic acid depends on substrate structure.
    Lyberg AM; Adlercreutz P
    Biochim Biophys Acta; 2008 Feb; 1784(2):343-50. PubMed ID: 18067872
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The immobilization protocol greatly alters the effects of metal phosphate modification on the activity/stability of immobilized lipases.
    Guimarães JR; Carballares D; Rocha-Martin J; Tardioli PW; Fernandez-Lafuente R
    Int J Biol Macromol; 2022 Dec; 222(Pt B):2452-2466. PubMed ID: 36220414
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combined cross-linking of Rhizomucor miehei lipase and Candida antarctica lipase B for the effective enrichment of omega-3 fatty acids in fish oil.
    Ahrari F; Mohammadi M
    Int J Biol Macromol; 2024 Mar; 260(Pt 2):129362. PubMed ID: 38272408
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solutions.
    Rodrigues RC; Virgen-Ortíz JJ; Dos Santos JCS; Berenguer-Murcia Á; Alcantara AR; Barbosa O; Ortiz C; Fernandez-Lafuente R
    Biotechnol Adv; 2019; 37(5):746-770. PubMed ID: 30974154
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Immobilization of lipases and assay in continuous fixed bed reactor.
    dos Reis-Costa L; Soares AM; França SC; Trevisan HC; Roberts TJ
    Protein Pept Lett; 2003 Dec; 10(6):619-28. PubMed ID: 14683514
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Immobilization of Lipases on Heterofunctional Octyl-Glyoxyl Agarose Supports: Improved Stability and Prevention of the Enzyme Desorption.
    Rueda N; Dos Santos JC; Torres R; Ortiz C; Barbosa O; Fernandez-Lafuente R
    Methods Enzymol; 2016; 571():73-85. PubMed ID: 27112395
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cooperativity of covalent attachment and ion exchange on alcalase immobilization using glutaraldehyde chemistry: Enzyme stabilization and improved proteolytic activity.
    Ait Braham S; Hussain F; Morellon-Sterling R; Kamal S; Kornecki JF; Barbosa O; Kati DE; Fernandez-Lafuente R
    Biotechnol Prog; 2019 Mar; 35(2):e2768. PubMed ID: 30575340
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Immobilization of lipases on polyethylene and application to perilla oil hydrolysis for production of alpha-linolenic acid.
    Watanabe T; Suzuki Y; Sagesaka Y; Kohashi M
    J Nutr Sci Vitaminol (Tokyo); 1995 Jun; 41(3):307-12. PubMed ID: 7472675
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel halophilic lipase, LipBL, showing high efficiency in the production of eicosapentaenoic acid (EPA).
    Pérez D; Martín S; Fernández-Lorente G; Filice M; Guisán JM; Ventosa A; García MT; Mellado E
    PLoS One; 2011; 6(8):e23325. PubMed ID: 21853111
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ethyl esters production catalyzed by immobilized lipases is influenced by n-hexane and ter-amyl alcohol as organic solvents.
    Borges JP; Quilles Junior JC; Moreno-Perez S; Fernandez-Lorente G; Boscolo M; Gomes E; da Silva R; Bocchini DA; Guisan JM
    Bioprocess Biosyst Eng; 2020 Nov; 43(11):2107-2115. PubMed ID: 32594315
    [TBL] [Abstract][Full Text] [Related]  

  • 37. One-Point Covalent Immobilization of Enzymes on Glyoxyl Agarose with Minimal Physico-Chemical Modification: Immobilized "Native Enzymes".
    Guisan JM; López-Gallego F; Bolivar JM; Rocha-Martín J; Fernandez-Lorente G
    Methods Mol Biol; 2020; 2100():83-92. PubMed ID: 31939116
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of the support on the reaction course of tributyrin hydrolysis catalyzed by soluble and immobilized lipases.
    Otero C; Pastor E; Fernández VM; Ballesteros A
    Appl Biochem Biotechnol; 1990 Mar; 23(3):237-47. PubMed ID: 2350171
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modulation of the regioselectivity of Thermomyces lanuginosus lipase via biocatalyst engineering for the Ethanolysis of oil in fully anhydrous medium.
    Abreu Silveira E; Moreno-Perez S; Basso A; Serban S; Pestana Mamede R; Tardioli PW; Sanchez Farinas C; Rocha-Martin J; Fernandez-Lorente G; Guisan JM
    BMC Biotechnol; 2017 Dec; 17(1):88. PubMed ID: 29246143
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Production of thermostable lipase by Thermomyces lanuginosus on solid-state fermentation: selective hydrolysis of sardine oil.
    Avila-Cisneros N; Velasco-Lozano S; Huerta-Ochoa S; Córdova-López J; Gimeno M; Favela-Torres E
    Appl Biochem Biotechnol; 2014 Nov; 174(5):1859-72. PubMed ID: 25149456
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.