BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38683455)

  • 21. TM4SF1 promotes EMT and cancer stemness via the Wnt/β-catenin/SOX2 pathway in colorectal cancer.
    Tang Q; Chen J; Di Z; Yuan W; Zhou Z; Liu Z; Han S; Liu Y; Ying G; Shu X; Di M
    J Exp Clin Cancer Res; 2020 Nov; 39(1):232. PubMed ID: 33153498
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Integrated analysis identifies microRNA-195 as a suppressor of Hippo-YAP pathway in colorectal cancer.
    Sun M; Song H; Wang S; Zhang C; Zheng L; Chen F; Shi D; Chen Y; Yang C; Xiang Z; Liu Q; Wei C; Xiong B
    J Hematol Oncol; 2017 Mar; 10(1):79. PubMed ID: 28356122
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MicroRNA-128 suppresses cell growth and metastasis in colorectal carcinoma by targeting IRS1.
    Wu L; Shi B; Huang K; Fan G
    Oncol Rep; 2015 Nov; 34(5):2797-805. PubMed ID: 26352220
    [TBL] [Abstract][Full Text] [Related]  

  • 24. BMP3 suppresses colon tumorigenesis via ActRIIB/SMAD2-dependent and TAK1/JNK signaling pathways.
    Wen J; Liu X; Qi Y; Niu F; Niu Z; Geng W; Zou Z; Huang R; Wang J; Zou H
    J Exp Clin Cancer Res; 2019 Oct; 38(1):428. PubMed ID: 31665064
    [TBL] [Abstract][Full Text] [Related]  

  • 25. RASAL2 promotes tumor progression through LATS2/YAP1 axis of hippo signaling pathway in colorectal cancer.
    Pan Y; Tong JHM; Lung RWM; Kang W; Kwan JSH; Chak WP; Tin KY; Chung LY; Wu F; Ng SSM; Mak TWC; Yu J; Lo KW; Chan AWH; To KF
    Mol Cancer; 2018 Jul; 17(1):102. PubMed ID: 30037330
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nlrx1-Regulated Defense and Metabolic Responses to
    Kastelberg B; Ayubi T; Tubau-Juni N; Leber A; Hontecillas R; Bassaganya-Riera J; Kale SD
    Front Immunol; 2021; 12():749504. PubMed ID: 34790195
    [TBL] [Abstract][Full Text] [Related]  

  • 27. OVOL2, an Inhibitor of WNT Signaling, Reduces Invasive Activities of Human and Mouse Cancer Cells and Is Down-regulated in Human Colorectal Tumors.
    Ye GD; Sun GB; Jiao P; Chen C; Liu QF; Huang XL; Zhang R; Cai WY; Li SN; Wu JF; Liu YJ; Wu RS; Xie YY; Chan EC; Liou YC; Li BA
    Gastroenterology; 2016 Mar; 150(3):659-671.e16. PubMed ID: 26619963
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ACSL4 promotes colorectal cancer and is a potential therapeutic target of emodin.
    Dai G; Wang D; Ma S; Hong S; Ding K; Tan X; Ju W
    Phytomedicine; 2022 Jul; 102():154149. PubMed ID: 35567995
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cryptochrome 1 overexpression correlates with tumor progression and poor prognosis in patients with colorectal cancer.
    Yu H; Meng X; Wu J; Pan C; Ying X; Zhou Y; Liu R; Huang W
    PLoS One; 2013; 8(4):e61679. PubMed ID: 23626715
    [TBL] [Abstract][Full Text] [Related]  

  • 30. miR-887-3p Inhibits the Progression of Colorectal Cancer via Downregulating DNMT1 Expression and Regulating P53 Expression.
    Teng D; Xia S; Hu S; Yan Y; Liu B; Yang Y; Du X
    Comput Intell Neurosci; 2022; 2022():7179733. PubMed ID: 35795731
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Long non-coding RNA FOXP4-AS1 is an unfavourable prognostic factor and regulates proliferation and apoptosis in colorectal cancer.
    Li J; Lian Y; Yan C; Cai Z; Ding J; Ma Z; Peng P; Wang K
    Cell Prolif; 2017 Feb; 50(1):. PubMed ID: 27790757
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Potential role of TRIM3 as a novel tumour suppressor in colorectal cancer (CRC) development.
    Piao MY; Cao HL; He NN; Xu MQ; Dong WX; Wang WQ; Wang BM; Zhou B
    Scand J Gastroenterol; 2016; 51(5):572-82. PubMed ID: 26691157
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The function of BTG3 in colorectal cancer cells and its possible signaling pathway.
    Lv C; Wang H; Tong Y; Yin H; Wang D; Yan Z; Liang Y; Wu D; Su Q
    J Cancer Res Clin Oncol; 2018 Feb; 144(2):295-308. PubMed ID: 29270670
    [TBL] [Abstract][Full Text] [Related]  

  • 34. MiR-335-5p Inhibits Cell Proliferation, Migration and Invasion in Colorectal Cancer through Downregulating LDHB.
    Zhang D; Yang N
    J BUON; 2019; 24(3):1128-1136. PubMed ID: 31424671
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Loss of mitochondrial aconitase promotes colorectal cancer progression via SCD1-mediated lipid remodeling.
    You X; Tian J; Zhang H; Guo Y; Yang J; Zhu C; Song M; Wang P; Liu Z; Cancilla J; Lu W; Glorieux C; Wen S; Du H; Huang P; Hu Y
    Mol Metab; 2021 Jun; 48():101203. PubMed ID: 33676027
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MicroRNA-140-5p inhibits the progression of colorectal cancer by targeting VEGFA.
    Zhang W; Zou C; Pan L; Xu Y; Qi W; Ma G; Hou Y; Jiang P
    Cell Physiol Biochem; 2015; 37(3):1123-33. PubMed ID: 26402430
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fos-like antigen 2 (FOSL2) promotes metastasis in colon cancer.
    Li S; Fang XD; Wang XY; Fei BY
    Exp Cell Res; 2018 Dec; 373(1-2):57-61. PubMed ID: 30114390
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Long noncoding RNA TUG1 regulates the progression of colorectal cancer through miR-542-3p/TRIB2 axis and Wnt/β-catenin pathway.
    Liu Q; Zhang W; Luo L; Han K; Liu R; Wei S; Guo X
    Diagn Pathol; 2021 May; 16(1):47. PubMed ID: 34030715
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The expression of long noncoding RNA CRCAL-3 in colorectal cancer and its impacts on cell proliferation and migration.
    Chang H; Wang GN; Tao YL
    J Cell Biochem; 2019 Sep; 120(9):15369-15377. PubMed ID: 31038794
    [TBL] [Abstract][Full Text] [Related]  

  • 40. NOD-like receptor X1 functions as a tumor suppressor by inhibiting epithelial-mesenchymal transition and inducing aging in hepatocellular carcinoma cells.
    Hu B; Ding GY; Fu PY; Zhu XD; Ji Y; Shi GM; Shen YH; Cai JB; Yang Z; Zhou J; Fan J; Sun HC; Kuang M; Huang C
    J Hematol Oncol; 2018 Feb; 11(1):28. PubMed ID: 29482578
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.