These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 38684143)
1. Development and external validation of a multimodal integrated feature neural network (MIFNN) for the diagnosis of malignancy in small pulmonary nodules (≤10 mm). Yang R; Zhang Y; Li W; Li Q; Liu X; Zhang F; Liang Z; Huang J; Li X; Tao L; Guo X Biomed Phys Eng Express; 2024 May; 10(4):. PubMed ID: 38684143 [No Abstract] [Full Text] [Related]
2. Deep learning for malignancy risk estimation of incidental sub-centimeter pulmonary nodules on CT images. Zhang R; Wei Y; Wang D; Chen B; Sun H; Lei Y; Zhou Q; Luo Z; Jiang L; Qiu R; Shi F; Li W Eur Radiol; 2024 Jul; 34(7):4218-4229. PubMed ID: 38114849 [TBL] [Abstract][Full Text] [Related]
3. Enhancing a deep learning model for pulmonary nodule malignancy risk estimation in chest CT with uncertainty estimation. Peeters D; Alves N; Venkadesh KV; Dinnessen R; Saghir Z; Scholten ET; Schaefer-Prokop C; Vliegenthart R; Prokop M; Jacobs C Eur Radiol; 2024 Oct; 34(10):6639-6651. PubMed ID: 38536463 [TBL] [Abstract][Full Text] [Related]
4. Preoperative diagnosis of malignant pulmonary nodules in lung cancer screening with a radiomics nomogram. Liu A; Wang Z; Yang Y; Wang J; Dai X; Wang L; Lu Y; Xue F Cancer Commun (Lond); 2020 Jan; 40(1):16-24. PubMed ID: 32125097 [TBL] [Abstract][Full Text] [Related]
5. Development and clinical application of deep learning model for lung nodules screening on CT images. Cui S; Ming S; Lin Y; Chen F; Shen Q; Li H; Chen G; Gong X; Wang H Sci Rep; 2020 Aug; 10(1):13657. PubMed ID: 32788705 [TBL] [Abstract][Full Text] [Related]
6. Deep Learning for Malignancy Risk Estimation of Pulmonary Nodules Detected at Low-Dose Screening CT. Venkadesh KV; Setio AAA; Schreuder A; Scholten ET; Chung K; W Wille MM; Saghir Z; van Ginneken B; Prokop M; Jacobs C Radiology; 2021 Aug; 300(2):438-447. PubMed ID: 34003056 [TBL] [Abstract][Full Text] [Related]
7. Artificial intelligence for detecting small FDG-positive lung nodules in digital PET/CT: impact of image reconstructions on diagnostic performance. Schwyzer M; Martini K; Benz DC; Burger IA; Ferraro DA; Kudura K; Treyer V; von Schulthess GK; Kaufmann PA; Huellner MW; Messerli M Eur Radiol; 2020 Apr; 30(4):2031-2040. PubMed ID: 31822970 [TBL] [Abstract][Full Text] [Related]
8. Identifying pulmonary nodules or masses on chest radiography using deep learning: external validation and strategies to improve clinical practice. Liang CH; Liu YC; Wu MT; Garcia-Castro F; Alberich-Bayarri A; Wu FZ Clin Radiol; 2020 Jan; 75(1):38-45. PubMed ID: 31521323 [TBL] [Abstract][Full Text] [Related]
9. A novel image deep learning-based sub-centimeter pulmonary nodule management algorithm to expedite resection of the malignant and avoid over-diagnosis of the benign. Yang X; Chu XP; Huang S; Xiao Y; Li D; Su X; Qi YF; Qiu ZB; Wang Y; Tang WF; Wu YL; Zhu Q; Liang H; Zhong WZ Eur Radiol; 2024 Mar; 34(3):2048-2061. PubMed ID: 37658883 [TBL] [Abstract][Full Text] [Related]
10. LGDNet: local feature coupling global representations network for pulmonary nodules detection. Chi J; Zhao J; Wang S; Yu X; Wu C Med Biol Eng Comput; 2024 Jul; 62(7):1991-2004. PubMed ID: 38429443 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of Prediction Models for Identifying Malignancy in Pulmonary Nodules Detected via Low-Dose Computed Tomography. González Maldonado S; Delorme S; Hüsing A; Motsch E; Kauczor HU; Heussel CP; Kaaks R JAMA Netw Open; 2020 Feb; 3(2):e1921221. PubMed ID: 32058555 [TBL] [Abstract][Full Text] [Related]
12. A CAD system for pulmonary nodule prediction based on deep three-dimensional convolutional neural networks and ensemble learning. Huang W; Xue Y; Wu Y PLoS One; 2019; 14(7):e0219369. PubMed ID: 31299053 [TBL] [Abstract][Full Text] [Related]
13. The Value of Topological Radiomics Analysis in Predicting Malignant Risk of Pulmonary Ground-Glass Nodules: A Multi-Center Study. Wang M; Wei Y; Zhu M; Yu H; Guo C; Chen Z; Shi W; Ren J; Zhao W; Yang Z; Chen LA Technol Cancer Res Treat; 2024; 23():15330338241287089. PubMed ID: 39363876 [TBL] [Abstract][Full Text] [Related]
14. Robust explanation supervision for false positive reduction in pulmonary nodule detection. Zhao Q; Chang CW; Yang X; Zhao L Med Phys; 2024 Mar; 51(3):1687-1701. PubMed ID: 38224306 [TBL] [Abstract][Full Text] [Related]
15. Malignancy risk estimation of screen-detected nodules at baseline CT: comparison of the PanCan model, Lung-RADS and NCCN guidelines. van Riel SJ; Ciompi F; Jacobs C; Winkler Wille MM; Scholten ET; Naqibullah M; Lam S; Prokop M; Schaefer-Prokop C; van Ginneken B Eur Radiol; 2017 Oct; 27(10):4019-4029. PubMed ID: 28293773 [TBL] [Abstract][Full Text] [Related]
16. Applying a CT texture analysis model trained with deep-learning reconstruction images to iterative reconstruction images in pulmonary nodule diagnosis. Wang Q; Xu S; Zhang G; Zhang X; Gu J; Yang S; Zeng M; Zhang Z J Appl Clin Med Phys; 2022 Nov; 23(11):e13759. PubMed ID: 35998185 [TBL] [Abstract][Full Text] [Related]
17. Automated Pulmonary Nodule Classification in Computed Tomography Images Using a Deep Convolutional Neural Network Trained by Generative Adversarial Networks. Onishi Y; Teramoto A; Tsujimoto M; Tsukamoto T; Saito K; Toyama H; Imaizumi K; Fujita H Biomed Res Int; 2019; 2019():6051939. PubMed ID: 30719445 [TBL] [Abstract][Full Text] [Related]
19. Solitary solid pulmonary nodules: a CT-based deep learning nomogram helps differentiate tuberculosis granulomas from lung adenocarcinomas. Feng B; Chen X; Chen Y; Lu S; Liu K; Li K; Liu Z; Hao Y; Li Z; Zhu Z; Yao N; Liang G; Zhang J; Long W; Liu X Eur Radiol; 2020 Dec; 30(12):6497-6507. PubMed ID: 32594210 [TBL] [Abstract][Full Text] [Related]
20. Dual-branch feature fusion S3D V-Net network for lung nodules segmentation. Xu X; Du L; Yin D J Appl Clin Med Phys; 2024 Jun; 25(6):e14331. PubMed ID: 38478388 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]