These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 38684215)
1. A Temperature Self-Adaptive Electrolyte for Wide-Temperature Aqueous Zinc-Ion Batteries. Qu G; Wei H; Zhao S; Yang Y; Zhang X; Chen G; Liu Z; Li H; Han C Adv Mater; 2024 Jul; 36(29):e2400370. PubMed ID: 38684215 [TBL] [Abstract][Full Text] [Related]
2. A Synergistic Strategy of Organic Molecules Introduced a High Zn Wang N; Zhang Y; Yuan J; Hu L; Sun M; Li Z; Yao X; Weng X; Jia C ACS Appl Mater Interfaces; 2022 Oct; 14(42):48081-48090. PubMed ID: 36222419 [TBL] [Abstract][Full Text] [Related]
3. Achieving Highly Stable Zn Metal Anodes at Low Temperature via Regulating Electrolyte Solvation Structure. You S; Deng Q; Wang Z; Chu Y; Xu Y; Lu J; Yang C Adv Mater; 2024 Jun; 36(26):e2402245. PubMed ID: 38615264 [TBL] [Abstract][Full Text] [Related]
4. Bidentate Coordination Enables Anions-Regulated Solvation Structure for Advanced Aqueous Zinc Metal Batteries. Wang D; Li R; Dong J; Bai Z; Wang N; Dou SX; Yang J Angew Chem Int Ed Engl; 2024 Sep; ():e202414117. PubMed ID: 39315791 [TBL] [Abstract][Full Text] [Related]
5. Weak Solvation Effect Induced Optimal Interfacial Chemistry Enables Highly Durable Zn Anodes for Aqueous Zn-Ion Batteries. Cao X; Xu W; Zheng D; Wang F; Wang Y; Shi X; Lu X Angew Chem Int Ed Engl; 2024 Feb; 63(6):e202317302. PubMed ID: 38116830 [TBL] [Abstract][Full Text] [Related]
6. Uniform zinc-ion deposition regulated by thin sulfonated poly(ether ketone) layer for Stabilizing Zn anodes. Song B; Wang X; Gao H; Gao W; Ma X Nanotechnology; 2023 Oct; 35(2):. PubMed ID: 37820634 [TBL] [Abstract][Full Text] [Related]
7. Suppressed Dissolution of Fluorine-Rich SEI Enables Highly Reversible Zinc Metal Anode for Stable Aqueous Zinc-Ion Batteries. Zhang Y; Shen S; Xi K; Li P; Kang Z; Zhao J; Yin D; Su Y; Zhao H; He G; Ding S Angew Chem Int Ed Engl; 2024 Aug; 63(32):e202407067. PubMed ID: 38771481 [TBL] [Abstract][Full Text] [Related]
8. Rational Design of an In-Situ Polymer-Inorganic Hybrid Solid Electrolyte Interphase for Realising Stable Zn Metal Anode under Harsh Conditions. Chen R; Zhang W; Guan C; Zhou Y; Gilmore I; Tang H; Zhang Z; Dong H; Dai Y; Du Z; Gao X; Zong W; Xu Y; Jiang P; Liu J; Zhao F; Li J; Wang X; He G Angew Chem Int Ed Engl; 2024 May; 63(21):e202401987. PubMed ID: 38526053 [TBL] [Abstract][Full Text] [Related]
9. Electrical Double Layer and In Situ Polymerization SEI Enables High Reversible Zinc Metal Anode. Yin H; Wu H; Yang Y; Yao S; Han P; Shi Y; Liu R Small; 2024 Dec; 20(50):e2404367. PubMed ID: 39344599 [TBL] [Abstract][Full Text] [Related]
10. Constructing Hydrophobic Interface with Close-Packed Coordination Supramolecular Network for Long-Cycling and Dendrite-Free Zn-Metal Batteries. Tao Z; Zhu Y; Zhou Z; Wang A; Tan Y; Chen Z; Yu M; Yang Y Small; 2022 Jun; 18(22):e2107971. PubMed ID: 35499186 [TBL] [Abstract][Full Text] [Related]
11. Trehalose in Trace Quantities as a Multifunctional Electrolyte Additive for Highly Reversible Zinc Metal Anodes. Huang X; Pan T; Shao J; Qin Q; Li M; Li W; Sun W; Lin Y ACS Appl Mater Interfaces; 2024 Jan; 16(4):4784-4792. PubMed ID: 38228185 [TBL] [Abstract][Full Text] [Related]
12. Weak-Water-Coordination Electrolyte to Stabilize Zinc Anode Interface for Aqueous Zinc Ion Batteries. Li C; Wang H; Chen S; Bai Z; Zhu M; Wang H; Chen D; Ren Z; Chen S; Tang Y; Zhang Y Small; 2024 Mar; 20(11):e2306939. PubMed ID: 37929662 [TBL] [Abstract][Full Text] [Related]
13. Electrolyte Engineering with TFA Liang X; Liang Y; Gao Y; Qiao W; Yin D; Huang P; Wang C; Wang L; Cheng Y Small; 2024 Dec; 20(49):e2408162. PubMed ID: 39279610 [TBL] [Abstract][Full Text] [Related]
14. Co-Solvent Electrolyte Engineering for Stable Anode-Free Zinc Metal Batteries. Ming F; Zhu Y; Huang G; Emwas AH; Liang H; Cui Y; Alshareef HN J Am Chem Soc; 2022 Apr; 144(16):7160-7170. PubMed ID: 35436108 [TBL] [Abstract][Full Text] [Related]
15. Enabling High Reversibility of Zn anode via Interfacial Engineering Induced by Amino acid Electrolyte Additive. Naveed A; Li T; Ali A; Ahmad F; Qureshi WA; Su M; Li X; Zhou Y; Wu JC; Liu Y Small; 2024 Oct; 20(40):e2401589. PubMed ID: 38567494 [TBL] [Abstract][Full Text] [Related]
16. A self-regulated interface enabled by trivalent gadolinium ions toward highly reversible zinc metal anodes. Zhang H; Yang H; Liang Y; Niu F; Xu G; Wei X; Yang L J Colloid Interface Sci; 2024 Jun; 664():128-135. PubMed ID: 38460378 [TBL] [Abstract][Full Text] [Related]
17. Inert Group-Containing Electrolyte Additive Enabling Stable Aqueous Zinc-Ion Batteries. Liang H; Wu J; Xu J; Li J; Wang J; Cai J; Long Y; Yu X; Yang Z Small; 2024 Apr; 20(16):e2307322. PubMed ID: 38032169 [TBL] [Abstract][Full Text] [Related]
18. Constructing a Topologically Adaptable Solid Electrolyte Interphase for a Highly Reversible Zinc Anode. Yan T; Liu S; Li J; Tao M; Liang J; Du L; Cui Z; Song H ACS Nano; 2024 Jan; 18(4):3752-3762. PubMed ID: 38232329 [TBL] [Abstract][Full Text] [Related]
19. Ultra-Stable Aqueous Zinc Anodes: Enabling High-Performance Zinc-Ion Batteries via a ZnSiF Huang Y; Guo R; Li Z; Zhang J; Liu W; Kang F Adv Sci (Weinh); 2024 Nov; 11(44):e2407201. PubMed ID: 39373706 [TBL] [Abstract][Full Text] [Related]
20. Hydrated Eutectic Electrolyte Induced Bilayer Interphase for High-Performance Aqueous Zn-Ion Batteries with 100 °C Wide-Temperature Range. Wan J; Wang R; Liu Z; Zhang S; Hao J; Mao J; Li H; Chao D; Zhang L; Zhang C Adv Mater; 2024 Mar; 36(11):e2310623. PubMed ID: 38088907 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]