These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 38684225)

  • 1. Dynamic Multiplexed Control and Modeling of Optogenetic Systems Using the High-Throughput Optogenetic Platform, Lustro.
    Harmer ZP; Thompson JC; Cole DL; Venturelli OS; Zavala VM; McClean MN
    ACS Synth Biol; 2024 May; 13(5):1424-1433. PubMed ID: 38684225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic Multiplexed Control and Modeling of Optogenetic Systems Using the High-Throughput Optogenetic Platform, Lustro.
    Harmer ZP; Thompson JC; Cole DL; Zavala VM; McClean MN
    bioRxiv; 2023 Dec; ():. PubMed ID: 38187522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lustro: High-Throughput Optogenetic Experiments Enabled by Automation and a Yeast Optogenetic Toolkit.
    Harmer ZP; McClean MN
    ACS Synth Biol; 2023 Jul; 12(7):1943-1951. PubMed ID: 37434272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Throughput Optogenetics Experiments in Yeast Using the Automated Platform Lustro.
    Harmer ZP; McClean MN
    J Vis Exp; 2023 Aug; (198):. PubMed ID: 37590537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing high-throughput optogenetics: Integration of LITOS with Lustro enables simultaneous light stimulation and shaking.
    Harmer ZP; Höhener TC; Landolt AE; Mitchell C; McClean M
    MicroPubl Biol; 2024; 2024():. PubMed ID: 38371319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A yeast optogenetic toolkit (yOTK) for gene expression control in Saccharomyces cerevisiae.
    An-Adirekkun JM; Stewart CJ; Geller SH; Patel MT; Melendez J; Oakes BL; Noyes MB; McClean MN
    Biotechnol Bioeng; 2020 Mar; 117(3):886-893. PubMed ID: 31788779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lustro: High-throughput optogenetic experiments enabled by automation and a yeast optogenetic toolkit.
    Harmer ZP; McClean MN
    bioRxiv; 2023 Apr; ():. PubMed ID: 37066312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The rise and shine of yeast optogenetics.
    Figueroa D; Rojas V; Romero A; Larrondo LF; Salinas F
    Yeast; 2021 Feb; 38(2):131-146. PubMed ID: 33119964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fungal Light-Oxygen-Voltage Domains for Optogenetic Control of Gene Expression and Flocculation in Yeast.
    Salinas F; Rojas V; Delgado V; López J; Agosin E; Larrondo LF
    mBio; 2018 Jul; 9(4):. PubMed ID: 30065085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The
    Lalwani MA; Zhao EM; Wegner SA; Avalos JL
    ACS Synth Biol; 2021 Aug; 10(8):2060-2075. PubMed ID: 34346207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optogenetic switches for light-controlled gene expression in yeast.
    Salinas F; Rojas V; Delgado V; Agosin E; Larrondo LF
    Appl Microbiol Biotechnol; 2017 Apr; 101(7):2629-2640. PubMed ID: 28210796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optogenetic Amplification Circuits for Light-Induced Metabolic Control.
    Zhao EM; Lalwani MA; Chen JM; Orillac P; Toettcher JE; Avalos JL
    ACS Synth Biol; 2021 May; 10(5):1143-1154. PubMed ID: 33835777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A high-throughput synthetic biology approach for studying combinatorial chromatin-based transcriptional regulation.
    Alcantar MA; English MA; Valeri JA; Collins JJ
    Mol Cell; 2024 Jun; 84(12):2382-2396.e9. PubMed ID: 38906116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamical Modeling of Optogenetic Circuits in Yeast for Metabolic Engineering Applications.
    Lovelett RJ; Zhao EM; Lalwani MA; Toettcher JE; Kevrekidis IG; L Avalos J
    ACS Synth Biol; 2021 Feb; 10(2):219-227. PubMed ID: 33492138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid prototyping and design of cybergenetic single-cell controllers.
    Kumar S; Rullan M; Khammash M
    Nat Commun; 2021 Sep; 12(1):5651. PubMed ID: 34561433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optogenetic control of transcription in zebrafish.
    Liu H; Gomez G; Lin S; Lin S; Lin C
    PLoS One; 2012; 7(11):e50738. PubMed ID: 23226369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optogenetic tools for microbial synthetic biology.
    Chia N; Lee SY; Tong Y
    Biotechnol Adv; 2022 Oct; 59():107953. PubMed ID: 35398205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modular and Molecular Optimization of a LOV (Light-Oxygen-Voltage)-Based Optogenetic Switch in Yeast.
    Romero A; Rojas V; Delgado V; Salinas F; Larrondo LF
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and Characterization of Rapid Optogenetic Circuits for Dynamic Control in Yeast Metabolic Engineering.
    Zhao EM; Lalwani MA; Lovelett RJ; García-Echauri SA; Hoffman SM; Gonzalez CL; Toettcher JE; Kevrekidis IG; Avalos JL
    ACS Synth Biol; 2020 Dec; 9(12):3254-3266. PubMed ID: 33232598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Red-Light-Induced Genetic System for Control of Extracellular Electron Transfer.
    Zhao F; Niman CM; Ostovar G; Chavez MS; Atkinson JT; Bonis BM; Gralnick JA; El-Naggar MY; Boedicker JQ
    ACS Synth Biol; 2024 May; 13(5):1467-1476. PubMed ID: 38696739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.