BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 38684363)

  • 21. Neural Estimates of Imagined Outcomes in Basolateral Amygdala Depend on Orbitofrontal Cortex.
    Lucantonio F; Gardner MP; Mirenzi A; Newman LE; Takahashi YK; Schoenbaum G
    J Neurosci; 2015 Dec; 35(50):16521-30. PubMed ID: 26674876
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dissociable contributions of the orbitofrontal and infralimbic cortex to pavlovian autoshaping and discrimination reversal learning: further evidence for the functional heterogeneity of the rodent frontal cortex.
    Chudasama Y; Robbins TW
    J Neurosci; 2003 Sep; 23(25):8771-80. PubMed ID: 14507977
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evidence for broad versus segregated projections from cholinergic and noradrenergic nuclei to functionally and anatomically discrete subregions of prefrontal cortex.
    Chandler D; Waterhouse BD
    Front Behav Neurosci; 2012; 6():20. PubMed ID: 22661934
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lesions of rat infralimbic cortex result in disrupted retardation but normal summation test performance following training on a Pavlovian conditioned inhibition procedure.
    Rhodes SE; Killcross AS
    Eur J Neurosci; 2007 Nov; 26(9):2654-60. PubMed ID: 17970744
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Corticostriatal Suppression of Appetitive Pavlovian Conditioned Responding.
    Villaruel FR; Martins M; Chaudhri N
    J Neurosci; 2022 Feb; 42(5):834-849. PubMed ID: 34880119
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of electrically evoked field potentials in the medial prefrontal cortex and orbitofrontal cortex of the rat: modulation by monoamines.
    Wallace J; Jackson RK; Shotton TL; Munjal I; McQuade R; Gartside SE
    Eur Neuropsychopharmacol; 2014 Feb; 24(2):321-32. PubMed ID: 23932190
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inactivating the infralimbic but not prelimbic medial prefrontal cortex facilitates the extinction of appetitive Pavlovian conditioning in Long-Evans rats.
    Mendoza J; Sanio C; Chaudhri N
    Neurobiol Learn Mem; 2015 Feb; 118():198-208. PubMed ID: 25543024
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reward stability determines the contribution of orbitofrontal cortex to adaptive behavior.
    Riceberg JS; Shapiro ML
    J Neurosci; 2012 Nov; 32(46):16402-9. PubMed ID: 23152622
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distributed representations of temporal stimulus associations across regular-firing and fast-spiking neurons in rat medial prefrontal cortex.
    Xing B; Morrissey MD; Takehara-Nishiuchi K
    J Neurophysiol; 2020 Jan; 123(1):439-450. PubMed ID: 31851558
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interplay of prefrontal cortex and amygdala during extinction of drug seeking.
    Oliva V; Cartoni E; Latagliata EC; Puglisi-Allegra S; Baldassarre G
    Brain Struct Funct; 2018 Apr; 223(3):1071-1089. PubMed ID: 29081007
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The rodent medial prefrontal cortex and associated circuits in orchestrating adaptive behavior under variable demands.
    Howland JG; Ito R; Lapish CC; Villaruel FR
    Neurosci Biobehav Rev; 2022 Apr; 135():104569. PubMed ID: 35131398
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Noradrenaline and dopamine efflux in the prefrontal cortex in relation to appetitive classical conditioning.
    Mingote S; de Bruin JP; Feenstra MG
    J Neurosci; 2004 Mar; 24(10):2475-80. PubMed ID: 15014123
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Responses of rat medial prefrontal cortical neurons to Pavlovian conditioned stimuli and to delivery of appetitive reward.
    Petykó Z; Gálosi R; Tóth A; Máté K; Szabó I; Szabó I; Karádi Z; Lénárd L
    Behav Brain Res; 2015; 287():109-19. PubMed ID: 25819423
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dorsomedial prefrontal cortex contribution to behavioral and nucleus accumbens neuronal responses to incentive cues.
    Ishikawa A; Ambroggi F; Nicola SM; Fields HL
    J Neurosci; 2008 May; 28(19):5088-98. PubMed ID: 18463262
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Orbitofrontal neurons acquire responses to 'valueless' Pavlovian cues during unblocking.
    McDannald MA; Esber GR; Wegener MA; Wied HM; Liu TL; Stalnaker TA; Jones JL; Trageser J; Schoenbaum G
    Elife; 2014 Jul; 3():e02653. PubMed ID: 25037263
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Trace and contextual fear conditioning require neural activity and NMDA receptor-dependent transmission in the medial prefrontal cortex.
    Gilmartin MR; Helmstetter FJ
    Learn Mem; 2010 Jun; 17(6):289-96. PubMed ID: 20504949
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Encoding of conditioned inhibitors of fear in the infralimbic cortex.
    Ng KH; Sangha S
    Cereb Cortex; 2023 Apr; 33(9):5658-5670. PubMed ID: 36411540
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Origin of extracellular dopamine from dopamine and noradrenaline neurons in the medial prefrontal and occipital cortex.
    Devoto P; Flore G; Longu G; Pira L; Gessa GL
    Synapse; 2003 Dec; 50(3):200-5. PubMed ID: 14515337
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Orbitofrontal Cortex Signals Expected Outcomes with Predictive Codes When Stable Contingencies Promote the Integration of Reward History.
    Riceberg JS; Shapiro ML
    J Neurosci; 2017 Feb; 37(8):2010-2021. PubMed ID: 28115481
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional heterogeneity within the rodent lateral orbitofrontal cortex dissociates outcome devaluation and reversal learning deficits.
    Panayi MC; Killcross S
    Elife; 2018 Jul; 7():. PubMed ID: 30044220
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.