These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. 3D-Printed Extracellular Matrix/Polyethylene Glycol Diacrylate Hydrogel Incorporating the Anti-inflammatory Phytomolecule Honokiol for Regeneration of Osteochondral Defects. Zhu S; Chen P; Chen Y; Li M; Chen C; Lu H Am J Sports Med; 2020 Sep; 48(11):2808-2818. PubMed ID: 32762553 [TBL] [Abstract][Full Text] [Related]
3. Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering. Bittner SM; Smith BT; Diaz-Gomez L; Hudgins CD; Melchiorri AJ; Scott DW; Fisher JP; Mikos AG Acta Biomater; 2019 May; 90():37-48. PubMed ID: 30905862 [TBL] [Abstract][Full Text] [Related]
4. Development and Characterization of Heparin-Containing Hydrogel/3D-Printed Scaffold Composites for Craniofacial Reconstruction. Brown NE; Ellerbe LR; Hollister SJ; Temenoff JS Ann Biomed Eng; 2024 Aug; 52(8):2287-2307. PubMed ID: 38734845 [TBL] [Abstract][Full Text] [Related]
5. 3D Printed Chitosan Composite Scaffold for Chondrocytes Differentiation. Sahai N; Gogoi M; Tewari RP Curr Med Imaging; 2021; 17(7):832-842. PubMed ID: 33334294 [TBL] [Abstract][Full Text] [Related]
6. Reinforcement of Mono- and Bi-layer Poly(Ethylene Glycol) Hydrogels with a Fibrous Collagen Scaffold. Kinneberg KR; Nelson A; Stender ME; Aziz AH; Mozdzen LC; Harley BA; Bryant SJ; Ferguson VL Ann Biomed Eng; 2015 Nov; 43(11):2618-29. PubMed ID: 26001970 [TBL] [Abstract][Full Text] [Related]
7. 3D-printed biomimetic scaffolds with precisely controlled and tunable structures guide cell migration and promote regeneration of osteochondral defect. Gu Y; Zou Y; Huang Y; Liang R; Wu Y; Hu Y; Hong Y; Zhang X; Toh YC; Ouyang H; Zhang S Biofabrication; 2023 Oct; 16(1):. PubMed ID: 37797606 [TBL] [Abstract][Full Text] [Related]
8. Biomimetic and mechanically supportive 3D printed scaffolds for cartilage and osteochondral tissue engineering using photopolymers and digital light processing. Schoonraad SA; Fischenich KM; Eckstein KN; Crespo-Cuevas V; Savard LM; Muralidharan A; Tomaschke AA; Uzcategui AC; Randolph MA; McLeod RR; Ferguson VL; Bryant SJ Biofabrication; 2021 Sep; 13(4):. PubMed ID: 34479218 [TBL] [Abstract][Full Text] [Related]
9. Polyethylene glycol diacrylate scaffold filled with cell-laden methacrylamide gelatin/alginate hydrogels used for cartilage repair. Zhang X; Yan Z; Guan G; Lu Z; Yan S; Du A; Wang L; Li Q J Biomater Appl; 2022 Jan; 36(6):1019-1032. PubMed ID: 34605703 [TBL] [Abstract][Full Text] [Related]
10. Is 3D Printing Promising for Osteochondral Tissue Regeneration? Ege D; Hasirci V ACS Appl Bio Mater; 2023 Apr; 6(4):1431-1444. PubMed ID: 36943415 [TBL] [Abstract][Full Text] [Related]
11. Biomimetic injectable and bilayered hydrogel scaffold based on collagen and chondroitin sulfate for the repair of osteochondral defects. Cao Y; Zhang H; Qiu M; Zheng Y; Shi X; Yang J Int J Biol Macromol; 2024 Feb; 257(Pt 1):128593. PubMed ID: 38056750 [TBL] [Abstract][Full Text] [Related]
12. Composite Hydrogels With Controlled Degradation in 3D Printed Scaffolds. Jiang Z; Shaha R; Jiang K; McBride R; Frick C; Oakey J IEEE Trans Nanobioscience; 2019 Apr; 18(2):261-264. PubMed ID: 30892230 [TBL] [Abstract][Full Text] [Related]
13. Computational investigation of interface printing patterns within 3D printed multilayered scaffolds for osteochondral tissue engineering. Choe R; Devoy E; Kuzemchak B; Sherry M; Jabari E; Packer JD; Fisher JP Biofabrication; 2022 Feb; 14(2):. PubMed ID: 35120345 [TBL] [Abstract][Full Text] [Related]
15. Reinforcing interpenetrating network hydrogels with 3D printed polymer networks to engineer cartilage mimetic composites. Schipani R; Scheurer S; Florentin R; Critchley SE; Kelly DJ Biofabrication; 2020 May; 12(3):035011. PubMed ID: 32252045 [TBL] [Abstract][Full Text] [Related]
16. Cryogenic 3D printing of heterogeneous scaffolds with gradient mechanical strengths and spatial delivery of osteogenic peptide/TGF-β1 for osteochondral tissue regeneration. Wang C; Yue H; Huang W; Lin X; Xie X; He Z; He X; Liu S; Bai L; Lu B; Wei Y; Wang M Biofabrication; 2020 Mar; 12(2):025030. PubMed ID: 32106097 [TBL] [Abstract][Full Text] [Related]
17. 3D-printed scaffolds with calcified layer for osteochondral tissue engineering. Li Z; Jia S; Xiong Z; Long Q; Yan S; Hao F; Liu J; Yuan Z J Biosci Bioeng; 2018 Sep; 126(3):389-396. PubMed ID: 29685821 [TBL] [Abstract][Full Text] [Related]
19. Digital Light Processing-Based 3D Printing of Cell-Seeding Hydrogel Scaffolds with Regionally Varied Stiffness. Xue D; Zhang J; Wang Y; Mei D ACS Biomater Sci Eng; 2019 Sep; 5(9):4825-4833. PubMed ID: 33448825 [TBL] [Abstract][Full Text] [Related]
20. [Preparation and Li J; Zhang X; Guo Q; Zhang J; Cao Y; Zhang X; Huang J; Wang Q; Liu X; Hao C Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Apr; 32(4):434-440. PubMed ID: 29806301 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]