These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38684698)

  • 1. Deep-learning based 3D birefringence image generation using 2D multi-view holographic images.
    Kim H; Jun T; Lee H; Chae BG; Yoon M; Kim C
    Sci Rep; 2024 Apr; 14(1):9879. PubMed ID: 38684698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Learning-Based Holographic Polarization Microscopy.
    Liu T; de Haan K; Bai B; Rivenson Y; Luo Y; Wang H; Karalli D; Fu H; Zhang Y; FitzGerald J; Ozcan A
    ACS Photonics; 2020 Nov; 7(11):3023-3034. PubMed ID: 34368395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generating 3D images of material microstructures from a single 2D image: a denoising diffusion approach.
    Phan J; Sarmad M; Ruspini L; Kiss G; Lindseth F
    Sci Rep; 2024 Mar; 14(1):6498. PubMed ID: 38499588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Holographic reconstruction enhancement via unpaired image-to-image translation.
    Scherrer R; Quiniou T; Jauffrais T; Lemonnier H; Bonnet S; Selmaoui-Folcher N
    Appl Opt; 2022 Nov; 61(33):9807-9816. PubMed ID: 36606810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DeepOrganNet: On-the-Fly Reconstruction and Visualization of 3D / 4D Lung Models from Single-View Projections by Deep Deformation Network.
    Wang Y; Zhong Z; Hua J
    IEEE Trans Vis Comput Graph; 2020 Jan; 26(1):960-970. PubMed ID: 31442979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive deep learning model for 3D color holography.
    Yolalmaz A; Yüce E
    Sci Rep; 2022 Feb; 12(1):2487. PubMed ID: 35169161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polarization microscopy by use of digital holography: application to optical-fiber birefringence measurements.
    Colomb T; Dürr F; Cuche E; Marquet P; Limberger HG; Salathé RP; Depeursinge C
    Appl Opt; 2005 Jul; 44(21):4461-9. PubMed ID: 16047894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of Polarization Angle on Holographic Recording Based on PQ/PMMA.
    He W; Liu D; Chen H; Wang J; Zhang Y; Zhang B
    Polymers (Basel); 2024 Mar; 16(6):. PubMed ID: 38543426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polarization holographic microscope slide for birefringence imaging of anisotropic samples in microfluidics.
    Yang Y; Huang HY; Guo CS
    Opt Express; 2020 May; 28(10):14762-14773. PubMed ID: 32403511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interferometric method for birefringence determination with a polarizing microscope.
    Dumitraşcu L; Dumitraşcu I; Dorohoi DO; Toma M
    Opt Express; 2008 Dec; 16(25):20884-90. PubMed ID: 19065227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning-based hologram generation using a white light source.
    Go T; Lee S; You D; Lee SJ
    Sci Rep; 2020 Jun; 10(1):8977. PubMed ID: 32488035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binary solvent-exchange-induced self-assembly of silk fibroin birefringent fibers for optical applications.
    Qiao H; Wang S; Liu L; Wu W; Cao L; Wang Z; Zheng K
    Int J Biol Macromol; 2023 May; 236():123627. PubMed ID: 36858084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Affordable, Indigenous Polarizer-Analyser System with Inbuilt Retardation Plate Function to Detect Birefringence using 3D Glasses: An Experience.
    Anil DP; Sudhir DP; Saksena A; Khurana N
    J Clin Diagn Res; 2016 Jan; 10(1):EC12-4. PubMed ID: 26894072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of a 3D printed smartphone microscopic system with enhanced imaging ability for biomedical applications.
    Rabha D; Sarmah A; Nath P
    J Microsc; 2019 Oct; 276(1):13-20. PubMed ID: 31498428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An investigation of the effect of fat suppression and dimensionality on the accuracy of breast MRI segmentation using U-nets.
    Fashandi H; Kuling G; Lu Y; Wu H; Martel AL
    Med Phys; 2019 Mar; 46(3):1230-1244. PubMed ID: 30609062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real time volumetric MRI for 3D motion tracking via geometry-informed deep learning.
    Liu L; Shen L; Johansson A; Balter JM; Cao Y; Chang D; Xing L
    Med Phys; 2022 Sep; 49(9):6110-6119. PubMed ID: 35766221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method.
    Zhou X; Takayama R; Wang S; Hara T; Fujita H
    Med Phys; 2017 Oct; 44(10):5221-5233. PubMed ID: 28730602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polarized light imaging of birefringence and diattenuation at high resolution and high sensitivity.
    Mehta SB; Shribak M; Oldenbourg R
    J Opt; 2013 Sep; 15(9):. PubMed ID: 24273640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DGE-CNN: 2D-to-3D holographic display based on a depth gradient extracting module and ZCNN network.
    Liu N; Huang Z; He Z; Cao L
    Opt Express; 2023 Jul; 31(15):23867-23876. PubMed ID: 37475227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of characteristics of degenerative joint disease using optical coherence tomography and polarization sensitive optical coherence tomography.
    Xie T; Guo S; Zhang J; Chen Z; Peavy GM
    Lasers Surg Med; 2006 Oct; 38(9):852-65. PubMed ID: 16998913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.