These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38685427)

  • 1. Particles-involved photochemical processes: A review for the case of mercury reduction in relation to aquatic mercury cycling.
    Oladoye PO; Wang K; Aguilar K; Liu G; Cai Y
    Sci Total Environ; 2024 Jun; 931():172845. PubMed ID: 38685427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of natural particles on photo-reduction of divalent mercury in everglades waters.
    Wang K; Liu G; Cai Y
    Environ Pollut; 2023 Apr; 323():121327. PubMed ID: 36822309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photochemical behaviors of mercury (Hg) species in aquatic systems: A systematic review on reaction process, mechanism, and influencing factor.
    Luo H; Cheng Q; Pan X
    Sci Total Environ; 2020 Jun; 720():137540. PubMed ID: 32143045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Salinity and total suspended solids control mercury speciation in a tidal river: Comparisons with a photochemical mercury model.
    Clarke RG; Klapstein SJ; Keenan R; O'Driscoll NJ
    Chemosphere; 2023 Dec; 344():140313. PubMed ID: 37775057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isotopic evidence for mercury photoreduction and retention on particles in surface waters of Central California, USA.
    Washburn SJ; Blum JD; Donovan PM; Singer MB
    Sci Total Environ; 2019 Jul; 674():451-461. PubMed ID: 31022536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental Mercury Chemistry - In Silico.
    Asaduzzaman A; Riccardi D; Afaneh AT; Cooper CJ; Smith JC; Wang F; Parks JM; Schreckenbach G
    Acc Chem Res; 2019 Feb; 52(2):379-388. PubMed ID: 30689347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of physical disturbance of sediment on the cycling of mercury in coastal regions.
    Wang W; Wang Y; Li Y; Song Y; Liu G; Yin Y; Cai Y
    Sci Total Environ; 2022 Sep; 838(Pt 3):156298. PubMed ID: 35660443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. To what extent can the biogeochemical cycling of mercury modulate the measurement of dissolved mercury in surface freshwaters by passive sampling?
    Bretier M; Dabrin A; Billon G; Mathon B; Miège C; Coquery M
    Chemosphere; 2020 Jun; 248():126006. PubMed ID: 32000038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photochemical reactions between mercury (Hg) and dissolved organic matter decrease Hg bioavailability and methylation.
    Luo HW; Yin X; Jubb AM; Chen H; Lu X; Zhang W; Lin H; Yu HQ; Liang L; Sheng GP; Gu B
    Environ Pollut; 2017 Jan; 220(Pt B):1359-1365. PubMed ID: 27836473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial Mercury Methylation in Aquatic Environments: A Critical Review of Published Field and Laboratory Studies.
    Regnell O; Watras CJ
    Environ Sci Technol; 2019 Jan; 53(1):4-19. PubMed ID: 30525497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biogeochemical and hydrologic synergy control mercury fate in an arid land river-reservoir system.
    Poulin BA; Tate MT; Ogorek J; Breitmeyer SE; Baldwin AK; Yoder AM; Harris R; Naymik J; Gastelecutto N; Hoovestol C; Larsen C; Myers R; Aiken GR; Krabbenhoft DP
    Environ Sci Process Impacts; 2023 May; 25(5):912-928. PubMed ID: 37186129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photochemical reactions of divalent mercury with thioglycolic acid: formation of mercuric sulfide particles.
    Si L; Ariya PA
    Chemosphere; 2015 Jan; 119():467-472. PubMed ID: 25094064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mercury in the atmospheric and coastal environments of Mexico.
    Ruelas-Inzunza J; Delgado-Alvarez C; Frías-Espericueta M; Páez-Osuna F
    Rev Environ Contam Toxicol; 2013; 226():65-99. PubMed ID: 23625130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: A critical review.
    O'Connor D; Hou D; Ok YS; Mulder J; Duan L; Wu Q; Wang S; Tack FMG; Rinklebe J
    Environ Int; 2019 May; 126():747-761. PubMed ID: 30878870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Particle-Bound Hg(II) is Available for Microbial Uptake as Revealed by a Whole-Cell Biosensor.
    Xiang Y; Guo Y; Liu G; Liu Y; Song M; Shi J; Hu L; Yin Y; Cai Y; Jiang G
    Environ Sci Technol; 2022 May; 56(10):6754-6764. PubMed ID: 35502862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elemental mercury: Its unique properties affect its behavior and fate in the environment.
    Gonzalez-Raymat H; Liu G; Liriano C; Li Y; Yin Y; Shi J; Jiang G; Cai Y
    Environ Pollut; 2017 Oct; 229():69-86. PubMed ID: 28577384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of dissolved gaseous mercury (DGM) and its controlling factors in the Yellow Sea and Bohai Sea.
    Cheng G; Li D; Li Y
    Ecotoxicol Environ Saf; 2019 Sep; 180():715-722. PubMed ID: 31152985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation of methylmercury into Hg(0) by the oxidation of iron(II) minerals.
    Xie F; Yuan Q; Meng Y; Luan F
    Water Res; 2024 Jun; 256():121645. PubMed ID: 38653093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption and desorption of Hg(II) by four aged microplastics and its effects on gaseous elemental mercury production in seawater.
    Zhou X; Wang Y; Liu R; Mo B; Li D; He L; Wang Y; Wang Y; Zheng H; Li F
    Ecotoxicol Environ Saf; 2024 Mar; 272():116036. PubMed ID: 38325271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of microorganism content in suspended particles on the particle-water partitioning of mercury in semi-enclosed coastal waters.
    Jang J; Kim H; Han S
    Sci Total Environ; 2014 Feb; 470-471():1558-64. PubMed ID: 24120117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.