These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 38685503)

  • 1. Nanomaterials with Enzyme-like Properties for Combatting Foodborne Pathogen Infections: Classifications, Mechanisms, and Applications in Food Preservation.
    Cui F; Li L; Wang D; Li J; Li T
    J Agric Food Chem; 2024 May; 72(18):10179-10194. PubMed ID: 38685503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent development in antibacterial activity and application of nanozymes in food preservation.
    Fang Y; Wu W; Qin Y; Liu H; Lu K; Wang L; Zhang M
    Crit Rev Food Sci Nutr; 2023; 63(28):9330-9348. PubMed ID: 35452320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon dot-based therapeutics for combating drug-resistant bacteria and biofilm infections in food preservation.
    Cui F; Ning Y; Wang D; Li J; Li X; Li T
    Crit Rev Food Sci Nutr; 2024; 64(2):203-219. PubMed ID: 35912471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biofilm Formation and Control of Foodborne Pathogenic Bacteria.
    Liu X; Yao H; Zhao X; Ge C
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tailoring the Surface and Composition of Nanozymes for Enhanced Bacterial Binding and Antibacterial Activity.
    Hou J; Xianyu Y
    Small; 2023 Oct; 19(42):e2302640. PubMed ID: 37322391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Research on Food Preservation Based on Antibacterial Technology: Progress and Future Prospects.
    Chu Z; Wang H; Dong B
    Molecules; 2024 Jul; 29(14):. PubMed ID: 39064897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanozymes used for antimicrobials and their applications.
    Yang D; Chen Z; Gao Z; Tammina SK; Yang Y
    Colloids Surf B Biointerfaces; 2020 Nov; 195():111252. PubMed ID: 32679446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic antibacterial and antibiofilm efficacy of nisin in combination with p-coumaric acid against food-borne bacteria Bacillus cereus and Salmonella typhimurium.
    Bag A; Chattopadhyay RR
    Lett Appl Microbiol; 2017 Nov; 65(5):366-372. PubMed ID: 28815637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antibacterial Activity and Mechanisms of Action of Inorganic Nanoparticles against Foodborne Bacterial Pathogens: A Systematic Review.
    Girma A; Abera B; Mekuye B; Mebratie G
    IET Nanobiotechnol; 2024; 2024():5417924. PubMed ID: 38863967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Foodborne Pathogens Prevention and Sensory Attributes Enhancement in Processed Cheese via Flavoring with Plant Extracts.
    Tayel AA; Hussein H; Sorour NM; El-Tras WF
    J Food Sci; 2015 Dec; 80(12):M2886-91. PubMed ID: 26540146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-atom nanozymes for antibacterial applications.
    Zhang S; Ruan W; Guan J
    Food Chem; 2024 Oct; 456():140094. PubMed ID: 38908326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copper/Carbon Hybrid Nanozyme: Tuning Catalytic Activity by the Copper State for Antibacterial Therapy.
    Xi J; Wei G; An L; Xu Z; Xu Z; Fan L; Gao L
    Nano Lett; 2019 Nov; 19(11):7645-7654. PubMed ID: 31580681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antibacterial Effects of Pyrolysis Oil Against Salmonella Typhimurium and Escherichia coli.
    Patra JK; Das G; Choi JW; Baek KH
    Foodborne Pathog Dis; 2016 Jan; 13(1):13-20. PubMed ID: 26651059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Research progress in nanozyme-based composite materials for fighting against bacteria and biofilms.
    Li Y; Zhu W; Li J; Chu H
    Colloids Surf B Biointerfaces; 2021 Feb; 198():111465. PubMed ID: 33223345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in nanoparticulate biomimetic catalysts for combating bacteria and biofilms.
    Xiong X; Huang Y; Lin C; Liu XY; Lin Y
    Nanoscale; 2019 Nov; 11(46):22206-22215. PubMed ID: 31482920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nisin and class IIa bacteriocin resistance among Listeria and other foodborne pathogens and spoilage bacteria.
    Kaur G; Malik RK; Mishra SK; Singh TP; Bhardwaj A; Singroha G; Vij S; Kumar N
    Microb Drug Resist; 2011 Jun; 17(2):197-205. PubMed ID: 21417775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immobilization of biosynthesized gallium nanoparticles in Polyvinylpyrrolidone/Sodium alginate films: Potent bactericidal protection against food spoilage bacteria.
    El-Sawaf AK; Abdelgawad AM; Nassar AA; Elsherbiny DA
    Int J Biol Macromol; 2024 Aug; 274(Pt 2):133438. PubMed ID: 38936583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of nanostructures as antimicrobials in the control of foodborne pathogen.
    Tian Y; Cai R; Yue T; Gao Z; Yuan Y; Wang Z
    Crit Rev Food Sci Nutr; 2022; 62(14):3951-3968. PubMed ID: 33427486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro bioactivity of the fractions and isolated compound from Combretum elaeagnoides leaf extract against selected foodborne pathogens.
    Erhabor RC; Aderogba MA; Erhabor JO; Nkadimeng SM; McGaw LJ
    J Ethnopharmacol; 2021 Jun; 273():113981. PubMed ID: 33647425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antimicrobial activity of bacteriocins produced by Enterococcus isolates recovered from Egyptian homemade dairy products against some foodborne pathogens.
    Sonbol FI; Abdel Aziz AA; El-Banna TE; Al-Fakhrany OM
    Int Microbiol; 2020 Nov; 23(4):533-547. PubMed ID: 32306109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.