These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 38685726)
1. Detection of sgRNA via SHERLOCK as Potential CRISPR Related Gene Doping Control Strategy. Paßreiter A; Naumann N; Thomas A; Grogna N; Delahaut P; Thevis M Anal Chem; 2024 May; 96(19):7452-7459. PubMed ID: 38685726 [TBL] [Abstract][Full Text] [Related]
2. How to detect CRISPR with CRISPR - employing SHERLOCK for doping control purposes. Paßreiter A; Naumann N; Thomas A; Grogna N; Delahaut P; Thevis M Analyst; 2022 Nov; 147(23):5528-5536. PubMed ID: 36341480 [TBL] [Abstract][Full Text] [Related]
3. First Steps toward Uncovering Gene Doping with CRISPR/Cas by Identifying SpCas9 in Plasma via HPLC-HRMS/MS. Paßreiter A; Thomas A; Grogna N; Delahaut P; Thevis M Anal Chem; 2020 Dec; 92(24):16322-16328. PubMed ID: 33237723 [TBL] [Abstract][Full Text] [Related]
4. New application of the CRISPR-Cas9 system for site-specific exogenous gene doping analysis. Yi JY; Kim M; Min H; Kim BG; Son J; Kwon OS; Sung C Drug Test Anal; 2021 Apr; 13(4):871-875. PubMed ID: 33201595 [TBL] [Abstract][Full Text] [Related]
5. Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 Triggered Isothermal Amplification for Site-Specific Nucleic Acid Detection. Huang M; Zhou X; Wang H; Xing D Anal Chem; 2018 Feb; 90(3):2193-2200. PubMed ID: 29260561 [TBL] [Abstract][Full Text] [Related]
6. Enhancement of single guide RNA transcription for efficient CRISPR/Cas-based genomic engineering. Ui-Tei K; Maruyama S; Nakano Y Genome; 2017 Jun; 60(6):537-545. PubMed ID: 28177825 [TBL] [Abstract][Full Text] [Related]
7. An Isothermal Method for Sensitive Detection of Mycobacterium tuberculosis Complex Using Clustered Regularly Interspaced Short Palindromic Repeats/Cas12a Cis and Trans Cleavage. Xu H; Zhang X; Cai Z; Dong X; Chen G; Li Z; Qiu L; He L; Liang B; Liu X; Liu J J Mol Diagn; 2020 Aug; 22(8):1020-1029. PubMed ID: 32470556 [TBL] [Abstract][Full Text] [Related]
8. CRISPR multitargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences. Prykhozhij SV; Rajan V; Gaston D; Berman JN PLoS One; 2015; 10(3):e0119372. PubMed ID: 25742428 [TBL] [Abstract][Full Text] [Related]
10. A facile, rapid and sensitive detection of MRSA using a CRISPR-mediated DNA FISH method, antibody-like dCas9/sgRNA complex. Guk K; Keem JO; Hwang SG; Kim H; Kang T; Lim EK; Jung J Biosens Bioelectron; 2017 Sep; 95():67-71. PubMed ID: 28412663 [TBL] [Abstract][Full Text] [Related]
11. Review of CRISPR/Cas9 sgRNA Design Tools. Cui Y; Xu J; Cheng M; Liao X; Peng S Interdiscip Sci; 2018 Jun; 10(2):455-465. PubMed ID: 29644494 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of CRISPR/Cas9 site-specific function and validation of sgRNA sequence by a Cas9/sgRNA-assisted reverse PCR technique. Zhang B; Zhou J; Li M; Wei Y; Wang J; Wang Y; Shi P; Li X; Huang Z; Tang H; Song Z Anal Bioanal Chem; 2021 Apr; 413(9):2447-2456. PubMed ID: 33661348 [TBL] [Abstract][Full Text] [Related]
13. Generalizable sgRNA design for improved CRISPR/Cas9 editing efficiency. Hiranniramol K; Chen Y; Liu W; Wang X Bioinformatics; 2020 May; 36(9):2684-2689. PubMed ID: 31971562 [TBL] [Abstract][Full Text] [Related]
14. Kinetics of the CRISPR-Cas9 effector complex assembly and the role of 3'-terminal segment of guide RNA. Mekler V; Minakhin L; Semenova E; Kuznedelov K; Severinov K Nucleic Acids Res; 2016 Apr; 44(6):2837-45. PubMed ID: 26945042 [TBL] [Abstract][Full Text] [Related]
15. Guide RNA engineering for versatile Cas9 functionality. Nowak CM; Lawson S; Zerez M; Bleris L Nucleic Acids Res; 2016 Nov; 44(20):9555-9564. PubMed ID: 27733506 [TBL] [Abstract][Full Text] [Related]
16. OffScan: a universal and fast CRISPR off-target sites detection tool. Cui Y; Liao X; Peng S; Tang T; Huang C; Yang C BMC Genomics; 2020 Mar; 21(Suppl 1):872. PubMed ID: 32138651 [TBL] [Abstract][Full Text] [Related]
17. DeepCRISPR: optimized CRISPR guide RNA design by deep learning. Chuai G; Ma H; Yan J; Chen M; Hong N; Xue D; Zhou C; Zhu C; Chen K; Duan B; Gu F; Qu S; Huang D; Wei J; Liu Q Genome Biol; 2018 Jun; 19(1):80. PubMed ID: 29945655 [TBL] [Abstract][Full Text] [Related]
18. Transcriptional Knockdown in Pneumococci Using CRISPR Interference. Kjos M Methods Mol Biol; 2019; 1968():89-98. PubMed ID: 30929208 [TBL] [Abstract][Full Text] [Related]
19. Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Sun W; Ji W; Hall JM; Hu Q; Wang C; Beisel CL; Gu Z Angew Chem Int Ed Engl; 2015 Oct; 54(41):12029-33. PubMed ID: 26310292 [TBL] [Abstract][Full Text] [Related]