BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 3868574)

  • 1. [Experience with resorbable TCP-ceramic granules for the filling of large bone defects after cystectomy in the jaw].
    Horch HH; Steegmann B
    Dtsch Zahnarztl Z; 1985 Jun; 40(6):672-7. PubMed ID: 3868574
    [No Abstract]   [Full Text] [Related]  

  • 2. [2-year clinical study on the reaction of Mediceram-R calcium phosphate-ceramic granules in circumscribed bone defects after cystectomy in the jaw].
    Köhler S; Kusicka B; Berger G
    Dtsch Z Mund Kiefer Gesichtschir; 1985; 9(5):355-9. PubMed ID: 3868464
    [No Abstract]   [Full Text] [Related]  

  • 3. [Filling of bone defects with granulated calcium-phosphate ceramic. Experimental animal studies and clinical experiences].
    Jacobs HG
    Zahnarzt; 1985; 29(4-5):281-7. PubMed ID: 3863394
    [No Abstract]   [Full Text] [Related]  

  • 4. [Particular clinical use for beta-tricalcium phosphate ceramic].
    Silla M; Dorigo E
    Riv Odontostomatol Implantoprotesi; 1984; (1):13-8. PubMed ID: 6598838
    [No Abstract]   [Full Text] [Related]  

  • 5. [Clinical use of BAS-O, a bioactive glass ceramic, for filling cystic cavities in stomatology].
    Pávek V; Novák Z; Strnad Z; Kudrnová D; Navrátilová B
    Sb Lek; 1993; 94(3):239-48. PubMed ID: 7973419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Bone defect filling material in jaw bones using tricalcium phosphate].
    Ghazal G; Prein J
    Swiss Dent; 1992; 13(1):15-8. PubMed ID: 1319620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Filling of bone defects with granular calcium phosphate ceramic. Experimental animal studies with histologic results].
    Jacobs HG; Luhr HG; Krause A; Uberall H
    Dtsch Z Mund Kiefer Gesichtschir; 1984; 8(1):38-42. PubMed ID: 6597010
    [No Abstract]   [Full Text] [Related]  

  • 8. [Application of phosphatic ceramics synthesized in our laboratories for compensation of post-cystical bone defects].
    Petrović D
    Stomatol Glas Srb; 1989; 36(3):231-8. PubMed ID: 2490005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Regeneration in bony defects after implantation of resorbable calcium phosphate ceramics. A comparative clinical study].
    Kaiser G; Wagner W; Tetsch P; Köster K
    Dtsch Zahnarztl Z; 1980 Jan; 35(1):108-11. PubMed ID: 6931711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of bone regeneration and graft material resorption using surface-modified bioactive glass in cortical and human maxillary cystic bone defects.
    El-Ghannam A; Amin H; Nasr T; Shama A
    Int J Oral Maxillofac Implants; 2004; 19(2):184-91. PubMed ID: 15101588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Bone inductive activity of beta-tricalcium phosphate-bone morphogenetic protein complex].
    Mieki A
    Aichi Gakuin Daigaku Shigakkai Shi; 1990 Mar; 28(1 Pt 1):43-58. PubMed ID: 2135110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Apatite formation on three kinds of bioactive material at an early stage in vivo: a comparative study by transmission electron microscopy.
    Neo M; Nakamura T; Ohtsuki C; Kokubo T; Yamamuro T
    J Biomed Mater Res; 1993 Aug; 27(8):999-1006. PubMed ID: 8408128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Histologic effect of pure-phase beta-tricalcium phosphate on bone regeneration in human artificial jawbone defects.
    Trisi P; Rao W; Rebaudi A; Fiore P
    Int J Periodontics Restorative Dent; 2003 Feb; 23(1):69-77. PubMed ID: 12617370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in ceramic-bone interface between surface-active ceramics and resorbable ceramics: a study by scanning and transmission electron microscopy.
    Neo M; Kotani S; Fujita Y; Nakamura T; Yamamuro T; Bando Y; Ohtsuki C; Kokubo T
    J Biomed Mater Res; 1992 Feb; 26(2):255-67. PubMed ID: 1569117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative performance of three ceramic bone graft substitutes.
    Hing KA; Wilson LF; Buckland T
    Spine J; 2007; 7(4):475-90. PubMed ID: 17630146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone formation in tricalcium phosphate-filled periodontal intrabony lesions. Histological observations in humans.
    Saffar JL; Colombier ML; Detienville R
    J Periodontol; 1990 Apr; 61(4):209-16. PubMed ID: 1691285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The value of beta-tricalcium-phosphate (CERASORB) in pre-prosthetic surgery].
    Szúcs A; Suba Z; Martonffy K; Hrabák K; Gyulai-Gaál S; Dóri F; Szabó G
    Fogorv Sz; 2000 Feb; 93(2):45-52. PubMed ID: 10703176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteogenesis after bone and bone marrow transplantation. The ability of ceramic materials to sustain osteogenesis from transplanted bone marrow cells: preliminary studies.
    Nade S; Armstrong L; McCartney E; Baggaley B
    Clin Orthop Relat Res; 1983 Dec; (181):255-63. PubMed ID: 6315286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ectopic bone formation associated with mesenchymal stem cells in a resorbable calcium deficient hydroxyapatite carrier.
    Kasten P; Vogel J; Luginbühl R; Niemeyer P; Tonak M; Lorenz H; Helbig L; Weiss S; Fellenberg J; Leo A; Simank HG; Richter W
    Biomaterials; 2005 Oct; 26(29):5879-89. PubMed ID: 15913762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Repair of cranial defects with bone marrow derived mesenchymal stem cells and beta-TCP scaffold in rabbits].
    Bo B; Wang CY; Guo XM
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2003 Jul; 17(4):335-8. PubMed ID: 12920731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.