These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38686172)

  • 1. Exponential Stability and Hypoelliptic Regularization for the Kinetic Fokker-Planck Equation with Confining Potential.
    Arnold A; Toshpulatov G
    J Stat Phys; 2024; 191(5):51. PubMed ID: 38686172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stationary solution and H theorem for a generalized Fokker-Planck equation.
    Jauregui M; Lucchi ALF; Passos JHY; Mendes RS
    Phys Rev E; 2021 Sep; 104(3-1):034130. PubMed ID: 34654074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Consequences of the H theorem from nonlinear Fokker-Planck equations.
    Schwämmle V; Nobre FD; Curado EM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041123. PubMed ID: 17994952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear Kinetics on Lattices Based on the Kinetic Interaction Principle.
    Kaniadakis G; Hristopulos DT
    Entropy (Basel); 2018 Jun; 20(6):. PubMed ID: 33265516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diffusion in a bistable system: The eigenvalue spectrum of the Fokker-Planck operator and Kramers' reaction rate theory.
    Zhan Y; Shizgal BD
    Phys Rev E; 2019 Apr; 99(4-1):042101. PubMed ID: 31108642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kappa and other nonequilibrium distributions from the Fokker-Planck equation and the relationship to Tsallis entropy.
    Shizgal BD
    Phys Rev E; 2018 May; 97(5-1):052144. PubMed ID: 29906998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability analysis of mean-field-type nonlinear Fokker-Planck equations associated with a generalized entropy and its application to the self-gravitating system.
    Shiino M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056118. PubMed ID: 12786231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the accuracy of the Fokker-Planck and Fermi pencil beam equations for charged particle transport.
    Börgers C; Larsen EW
    Med Phys; 1996 Oct; 23(10):1749-59. PubMed ID: 8946371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Jeffreys Divergence and Generalized Fisher Information Measures on Fokker-Planck Space-Time Random Field.
    Zhang J
    Entropy (Basel); 2023 Oct; 25(10):. PubMed ID: 37895566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relaxation of the distribution function tails for systems described by Fokker-Planck equations.
    Chavanis PH; Lemou M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 1):061106. PubMed ID: 16485930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Numerical Study of Quantum Entropy and Information in the Wigner-Fokker-Planck Equation for Open Quantum Systems.
    Edrisi A; Patwa H; Morales Escalante JA
    Entropy (Basel); 2024 Mar; 26(3):. PubMed ID: 38539774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonequilibrium distributions from the Fokker-Planck equation: Kappa distributions and Tsallis entropy.
    Oylukan AD; Shizgal B
    Phys Rev E; 2023 Jul; 108(1-1):014111. PubMed ID: 37583209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear inhomogeneous Fokker-Planck equations: Entropy and free-energy time evolution.
    Sicuro G; Rapčan P; Tsallis C
    Phys Rev E; 2016 Dec; 94(6-1):062117. PubMed ID: 28085323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trend to equilibrium for the kinetic Fokker-Planck equation via the neural network approach.
    Hwang HJ; Jang JW; Jo H; Lee JY
    J Comput Phys; 2020 Oct; 419():109665. PubMed ID: 32834105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generalized thermodynamics and Fokker-Planck equations: applications to stellar dynamics and two-dimensional turbulence.
    Chavanis PH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036108. PubMed ID: 14524833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How accurate are the nonlinear chemical Fokker-Planck and chemical Langevin equations?
    Grima R; Thomas P; Straube AV
    J Chem Phys; 2011 Aug; 135(8):084103. PubMed ID: 21895155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Colored-noise Fokker-Planck equation for the shear-induced self-diffusion process of non-Brownian particles.
    Lukassen LJ; Oberlack M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052145. PubMed ID: 25353777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solving the Fokker-Planck kinetic equation on a lattice.
    Moroni D; Rotenberg B; Hansen JP; Succi S; Melchionna S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066707. PubMed ID: 16907023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From the nonlinear Fokker-Planck equation to the Vlasov description and back: Confined interacting particles with drag.
    Plastino AR; Curado EMF; Nobre FD; Tsallis C
    Phys Rev E; 2018 Feb; 97(2-1):022120. PubMed ID: 29548132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved estimation of Fokker-Planck equations through optimization.
    Nawroth AP; Peinke J; Kleinhans D; Friedrich R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056102. PubMed ID: 18233713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.