BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 38686330)

  • 1. Flexible high-density microelectrode arrays for closed-loop brain-machine interfaces: a review.
    Liu X; Gong Y; Jiang Z; Stevens T; Li W
    Front Neurosci; 2024; 18():1348434. PubMed ID: 38686330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Closed-loop experiments and brain machine interfaces with multiphoton microscopy.
    Hira R
    Neurophotonics; 2024 Jul; 11(3):033405. PubMed ID: 38375331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Creating new functional circuits for action via brain-machine interfaces.
    Orsborn AL; Carmena JM
    Front Comput Neurosci; 2013 Nov; 7():157. PubMed ID: 24204342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanowire electrodes for high-density stimulation and measurement of neural circuits.
    Robinson JT; Jorgolli M; Park H
    Front Neural Circuits; 2013; 7():38. PubMed ID: 23486552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain-machine interfaces from motor to mood.
    Shanechi MM
    Nat Neurosci; 2019 Oct; 22(10):1554-1564. PubMed ID: 31551595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sub-mm functional decoupling of electrocortical signals through closed-loop BMI learning.
    Ledochowitsch P; Koralek AC; Moses D; Carmena JM; Maharbiz MM
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5622-5. PubMed ID: 24111012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Signal Generation, Acquisition, and Processing in Brain Machine Interfaces: A Unified Review.
    Salahuddin U; Gao PX
    Front Neurosci; 2021; 15():728178. PubMed ID: 34588951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decoding motor plans using a closed-loop ultrasonic brain-machine interface.
    Griggs WS; Norman SL; Deffieux T; Segura F; Osmanski BF; Chau G; Christopoulos V; Liu C; Tanter M; Shapiro MG; Andersen RA
    Nat Neurosci; 2024 Jan; 27(1):196-207. PubMed ID: 38036744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Versatile, modular 3D microelectrode arrays for neuronal ensemble recordings: from design to fabrication, assembly, and functional validation in non-human primates.
    Barz F; Livi A; Lanzilotto M; Maranesi M; Bonini L; Paul O; Ruther P
    J Neural Eng; 2017 Jun; 14(3):036010. PubMed ID: 28102825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classifying Intracortical Brain-Machine Interface Signal Disruptions Based on System Performance and Applicable Compensatory Strategies: A Review.
    Dunlap CF; Colachis SC; Meyers EC; Bockbrader MA; Friedenberg DA
    Front Neurorobot; 2020; 14():558987. PubMed ID: 33162885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-density microelectrode array recordings and real-time spike sorting for closed-loop experiments: an emerging technology to study neural plasticity.
    Franke F; Jäckel D; Dragas J; Müller J; Radivojevic M; Bakkum D; Hierlemann A
    Front Neural Circuits; 2012; 6():105. PubMed ID: 23267316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implantable Neural Probes for Brain-Machine Interfaces - Current Developments and Future Prospects.
    Choi JR; Kim SM; Ryu RH; Kim SP; Sohn JW
    Exp Neurobiol; 2018 Dec; 27(6):453-471. PubMed ID: 30636899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leveraging neural dynamics to extend functional lifetime of brain-machine interfaces.
    Kao JC; Ryu SI; Shenoy KV
    Sci Rep; 2017 Aug; 7(1):7395. PubMed ID: 28784984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anti-artifacts techniques for neural recording front-ends in closed-loop brain-machine interface ICs.
    Chen W; Liu X; Wan P; Chen Z; Chen Y
    Front Neurosci; 2024; 18():1393206. PubMed ID: 38784093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acute human brain responses to intracortical microelectrode arrays: challenges and future prospects.
    Fernández E; Greger B; House PA; Aranda I; Botella C; Albisua J; Soto-Sánchez C; Alfaro A; Normann RA
    Front Neuroeng; 2014; 7():24. PubMed ID: 25100989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wireless closed-loop deep brain stimulation using microelectrode array probes.
    Jia Q; Liu Y; Lv S; Wang Y; Jiao P; Xu W; Xu Z; Wang M; Cai X
    J Zhejiang Univ Sci B; 2024 Feb; ():1-21. PubMed ID: 38423536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Likelihood Gradient Ascent (LGA): a closed-loop decoder adaptation algorithm for brain-machine interfaces.
    Dangi S; Gowda S; Carmena JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2768-71. PubMed ID: 24110301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Critical Review of Microelectrode Arrays and Strategies for Improving Neural Interfaces.
    Ferguson M; Sharma D; Ross D; Zhao F
    Adv Healthc Mater; 2019 Oct; 8(19):e1900558. PubMed ID: 31464094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Closed Loop Experiment Manager (CLEM)-An Open and Inexpensive Solution for Multichannel Electrophysiological Recordings and Closed Loop Experiments.
    Hazan H; Ziv NE
    Front Neurosci; 2017; 11():579. PubMed ID: 29093659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emerging Materials and Technologies with Applications in Flexible Neural Implants: A Comprehensive Review of Current Issues with Neural Devices.
    Cho Y; Park S; Lee J; Yu KJ
    Adv Mater; 2021 Nov; 33(47):e2005786. PubMed ID: 34050691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.