These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 38686603)

  • 1. Heterogeneous CNF/MoO
    Zheng M; Liu P; Yan P; Zhou T; Lin X; Li X; Wen L; Xu Q
    Mater Horiz; 2024 Jul; 11(14):3375-3385. PubMed ID: 38686603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Confined Ionic-Liquid-Mediated Cation Diffusion through Layered Membranes for High-Performance Osmotic Energy Conversion.
    Hu Y; Xiao H; Fu L; Liu P; Wu Y; Chen W; Qian Y; Zhou S; Kong XY; Zhang Z; Jiang L; Wen L
    Adv Mater; 2023 Jun; 35(24):e2301285. PubMed ID: 36930971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of metal-organic framework/cellulose nanofibers-based hybrid membranes and their ion transport property for efficient osmotic energy conversion.
    Fu W; Zhang J; Zhang Q; Ahmad M; Sun Z; Li Z; Zhu Y; Zhou Y; Wang S
    Int J Biol Macromol; 2024 Feb; 257(Pt 1):128546. PubMed ID: 38061510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators.
    Zhang Z; Yang S; Zhang P; Zhang J; Chen G; Feng X
    Nat Commun; 2019 Jul; 10(1):2920. PubMed ID: 31266937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineered Cellulose Nanofiber Membranes with Ultrathin Low-Dimensional Carbon Material Layers for Photothermal-Enhanced Osmotic Energy Conversion.
    Luo Q; Liu P; Fu L; Hu Y; Yang L; Wu W; Kong XY; Jiang L; Wen L
    ACS Appl Mater Interfaces; 2022 Mar; 14(11):13223-13230. PubMed ID: 35262329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-Dimensional Nanofluidic Membranes toward Harvesting Salinity Gradient Power.
    Xin W; Jiang L; Wen L
    Acc Chem Res; 2021 Nov; 54(22):4154-4165. PubMed ID: 34719227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineered cellulose nanofibers membranes with oppositely charge characteristics for high-performance salinity gradient power generation by reverse electrodialysis.
    Wang S; Sun Z; Ahmad M; Fu W; Gao Z
    Int J Biol Macromol; 2023 Dec; 253(Pt 1):126608. PubMed ID: 37652325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-performance osmotic energy harvesting enabled by the synergism of space and surface charge in two-dimensional nanofluidic membranes.
    Xiao T; Li X; Lei W; Lu B; Liu Z; Zhai J
    J Colloid Interface Sci; 2024 Nov; 673():365-372. PubMed ID: 38878371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of metallic phase WS
    Gao Z; Zhang J; Ahmad M; Jiang B; Sun Z; Wang S; Jin Y
    Carbohydr Polym; 2022 Nov; 296():119847. PubMed ID: 36087960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased ion transport and high-efficient osmotic energy conversion through aqueous stable graphitic carbon nitride/cellulose nanofiber composite membrane.
    Gao Z; Sun Z; Ahmad M; Liu Y; Wei H; Wang S; Jin Y
    Carbohydr Polym; 2022 Mar; 280():119023. PubMed ID: 35027125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Massively Enhanced Charge Selectivity, Ion Transport, and Osmotic Energy Conversion by Antiswelling Nanoconfined Hydrogels.
    Lin YC; Chen HH; Chu CW; Yeh LH
    Nano Lett; 2024 Sep; 24(37):11756-11762. PubMed ID: 39236070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Combination of 2D Layered Graphene Oxide and 3D Porous Cellulose Heterogeneous Membranes for Nanofluidic Osmotic Power Generation.
    Jia P; Du X; Chen R; Zhou J; Agostini M; Sun J; Xiao L
    Molecules; 2021 Sep; 26(17):. PubMed ID: 34500776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surfactant-Assisted Sulfonated Covalent Organic Nanosheets: Extrinsic Charge for Improved Ion Transport and Salinity-Gradient Energy Harvesting.
    Zhou S; Hu Y; Xin W; Fu L; Lin X; Yang L; Hou S; Kong XY; Jiang L; Wen L
    Adv Mater; 2023 Feb; 35(6):e2208640. PubMed ID: 36457170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyoxometalate-based plasmonic electron sponge membrane for nanofluidic osmotic energy conversion.
    Zhu C; Xu L; Liu Y; Liu J; Wang J; Sun H; Lan YQ; Wang C
    Nat Commun; 2024 May; 15(1):4213. PubMed ID: 38760369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Giant Osmotic Energy Conversion through Vertical-Aligned Ion-Permselective Nanochannels in Covalent Organic Framework Membranes.
    Cao L; Chen IC; Chen C; Shinde DB; Liu X; Li Z; Zhou Z; Zhang Y; Han Y; Lai Z
    J Am Chem Soc; 2022 Jul; 144(27):12400-12409. PubMed ID: 35762206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-Dimensional Nanofluidic Membranes with Intercalated In-Plane Shortcuts for High-Performance Blue Energy Harvesting.
    Yan PP; Chen XC; Liang ZX; Fang YP; Yao J; Lu CX; Cai Y; Jiang L
    Small; 2023 Jan; 19(4):e2205003. PubMed ID: 36424182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vacancy Engineering for High-Efficiency Nanofluidic Osmotic Energy Generation.
    Safaei J; Gao Y; Hosseinpour M; Zhang X; Sun Y; Tang X; Zhang Z; Wang S; Guo X; Wang Y; Chen Z; Zhou D; Kang F; Jiang L; Wang G
    J Am Chem Soc; 2023 Feb; 145(4):2669-2678. PubMed ID: 36651291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oppositely Charged Ti
    Ding L; Xiao D; Lu Z; Deng J; Wei Y; Caro J; Wang H
    Angew Chem Int Ed Engl; 2020 May; 59(22):8720-8726. PubMed ID: 31950586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrathin and Ultrastrong Kevlar Aramid Nanofiber Membranes for Highly Stable Osmotic Energy Conversion.
    Ding L; Xiao D; Zhao Z; Wei Y; Xue J; Wang H
    Adv Sci (Weinh); 2022 Sep; 9(25):e2202869. PubMed ID: 35780505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interfacial Super-Assembly of Ordered Mesoporous Silica-Alumina Heterostructure Membranes with pH-Sensitive Properties for Osmotic Energy Harvesting.
    Zhou S; Xie L; Zhang L; Wen L; Tang J; Zeng J; Liu T; Peng D; Yan M; Qiu B; Liang Q; Liang K; Jiang L; Kong B
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):8782-8793. PubMed ID: 33560109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.