These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 38687134)
1. Lethal combination for seedlings: extreme heat drives mortality of drought-exposed high-elevation pine seedlings. Hankin LE; Barrios-Masias FH; Urza AK; Bisbing SM Ann Bot; 2024 Apr; ():. PubMed ID: 38687134 [TBL] [Abstract][Full Text] [Related]
2. Reforestation of high elevation pines: Direct seeding success depends on seed source and sowing environment. Hankin LE; Leger EA; Bisbing SM Ecol Appl; 2023 Sep; 33(6):e2897. PubMed ID: 37305925 [TBL] [Abstract][Full Text] [Related]
3. Warming and the dependence of limber pine (Pinus flexilis) establishment on summer soil moisture within and above its current elevation range. Moyes AB; Castanha C; Germino MJ; Kueppers LM Oecologia; 2013 Jan; 171(1):271-82. PubMed ID: 22875149 [TBL] [Abstract][Full Text] [Related]
4. Clinal variations in seedling traits and responses to water availability correspond to seed-source environmental gradients in a foundational dryland tree species. Vasey GL; Urza AK; Chambers JC; Pringle EG; Weisberg PJ Ann Bot; 2023 Oct; 132(2):203-216. PubMed ID: 36905361 [TBL] [Abstract][Full Text] [Related]
5. Differences in morphological and physiological plasticity in two species of first-year conifer seedlings exposed to drought result in distinct survivorship patterns. Augustine SP; Reinhardt K Tree Physiol; 2019 Aug; 39(8):1446-1460. PubMed ID: 31181151 [TBL] [Abstract][Full Text] [Related]
6. Expression of functional traits during seedling establishment in two populations of Pinus ponderosa from contrasting climates. Kerr KL; Meinzer FC; McCulloh KA; Woodruff DR; Marias DE Tree Physiol; 2015 May; 35(5):535-48. PubMed ID: 25934987 [TBL] [Abstract][Full Text] [Related]
7. Effects of Soil Microbes on Functional Traits of Loblolly Pine ( Ulrich DEM; Sevanto S; Peterson S; Ryan M; Dunbar J Front Plant Sci; 2019; 10():1643. PubMed ID: 31998333 [TBL] [Abstract][Full Text] [Related]
8. Nocturnal warming accelerates drought-induced seedling mortality of two evergreen tree species. Lu R; Du Y; Sun H; Xu X; Yan L; Xia J Tree Physiol; 2022 Jun; 42(6):1164-1176. PubMed ID: 34919711 [TBL] [Abstract][Full Text] [Related]
9. Seedbed not rescue effect buffer the role of extreme precipitation on temperate forest regeneration. Clark PW; D'Amato AW Ecology; 2023 Mar; 104(3):e3926. PubMed ID: 36415040 [TBL] [Abstract][Full Text] [Related]
10. Transpiration drivers of high-elevation five-needle pines (Pinus longaeva and Pinus flexilis) in sky-island ecosystems of the North American Great Basin. Liu X; Biondi F Sci Total Environ; 2020 Oct; 739():139861. PubMed ID: 32544678 [TBL] [Abstract][Full Text] [Related]
11. High temperature and drought stress effects on survival of Pinus ponderosa seedlings. Kolb PF; Robberecht R Tree Physiol; 1996 Aug; 16(8):665-72. PubMed ID: 14871688 [TBL] [Abstract][Full Text] [Related]
12. Global change stressors alter resources and shift plant interactions from facilitation to competition over time. Alba C; Fahey C; Flory SL Ecology; 2019 Dec; 100(12):e02859. PubMed ID: 31365121 [TBL] [Abstract][Full Text] [Related]
13. Ecophysiological variation in two provenances of Pinus flexilis seedlings across an elevation gradient from forest to alpine. Reinhardt K; Castanha C; Germino MJ; Kueppers LM Tree Physiol; 2011 Jun; 31(6):615-25. PubMed ID: 21757486 [TBL] [Abstract][Full Text] [Related]
14. Linking carbon and water relations to drought-induced mortality in Pinus flexilis seedlings. Reinhardt K; Germino MJ; Kueppers LM; Domec JC; Mitton J Tree Physiol; 2015 Jul; 35(7):771-82. PubMed ID: 26116925 [TBL] [Abstract][Full Text] [Related]
15. The effect of ectomycorrhizal fungal exposure on nursery-raised Pinus sylvestris seedlings: plant transpiration under short-term drought, root morphology and plant biomass. De Quesada G; Xu J; Salmon Y; Lintunen A; Poque S; Himanen K; Heinonsalo J Tree Physiol; 2024 Apr; 44(4):. PubMed ID: 38470306 [TBL] [Abstract][Full Text] [Related]
16. Industrial-age changes in atmospheric [CO2] and temperature differentially alter responses of faster- and slower-growing Eucalyptus seedlings to short-term drought. Lewis JD; Smith RA; Ghannoum O; Logan BA; Phillips NG; Tissue DT Tree Physiol; 2013 May; 33(5):475-88. PubMed ID: 23677118 [TBL] [Abstract][Full Text] [Related]
17. The effects of ectomycorrhizal fungal networks on seedling establishment are contingent on species and severity of overstorey mortality. Pec GJ; Simard SW; Cahill JF; Karst J Mycorrhiza; 2020 May; 30(2-3):173-183. PubMed ID: 32088844 [TBL] [Abstract][Full Text] [Related]
18. Nitrogen nutrition and drought hardening exert opposite effects on the stress tolerance of Pinus pinea L. seedlings. Villar-Salvador P; Peñuelas JL; Jacobs DF Tree Physiol; 2013 Feb; 33(2):221-32. PubMed ID: 23370549 [TBL] [Abstract][Full Text] [Related]
19. Poor acclimation to experimental field drought in subalpine forest tree seedlings. Goke A; Martin PH AoB Plants; 2022 Feb; 14(1):plab077. PubMed ID: 35079329 [TBL] [Abstract][Full Text] [Related]
20. Effects of prolonged drought stress on Scots pine seedling carbon allocation. Aaltonen H; Lindén A; Heinonsalo J; Biasi C; Pumpanen J Tree Physiol; 2017 Apr; 37(4):418-427. PubMed ID: 27974653 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]