These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 38687504)
1. Recent progress and perspectives on metal-organic frameworks as solid-state electrolytes for lithium batteries. Wang X; Jin S; Liu Z Chem Commun (Camb); 2024 May; 60(41):5369-5390. PubMed ID: 38687504 [TBL] [Abstract][Full Text] [Related]
2. A Metal-Organic Framework Based Quasi-Solid-State Electrolyte Enabling Continuous Ion Transport for High-Safety and High-Energy-Density Lithium Metal Batteries. Wu Z; Yi Y; Hai F; Tian X; Zheng S; Guo J; Tang W; Hua W; Li M ACS Appl Mater Interfaces; 2023 May; 15(18):22065-22074. PubMed ID: 37122124 [TBL] [Abstract][Full Text] [Related]
3. Mechanisms of the Accelerated Li Duan S; Qian L; Zheng Y; Zhu Y; Liu X; Dong L; Yan W; Zhang J Adv Mater; 2024 Aug; 36(32):e2314120. PubMed ID: 38578406 [TBL] [Abstract][Full Text] [Related]
4. Significantly enhanced lithium-ion conductivity of solid-state electrolytes Wang X; Tian L; Tao F; Liu M; Jin S; Liu Z Dalton Trans; 2023 Jul; 52(29):10222-10230. PubMed ID: 37436096 [TBL] [Abstract][Full Text] [Related]
5. Toward High-Performance Metal-Organic-Framework-Based Quasi-Solid-State Electrolytes: Tunable Structures and Electrochemical Properties. Dong P; Zhang X; Hiscox W; Liu J; Zamora J; Li X; Su M; Zhang Q; Guo X; McCloy J; Song MK Adv Mater; 2023 Aug; 35(32):e2211841. PubMed ID: 37130704 [TBL] [Abstract][Full Text] [Related]
6. Toward Enhancing Low Temperature Performances of Lithium-Ion Transport for Metal-Organic Framework-Based Solid-State Electrolyte: Nanostructure Engineering or Crystal Morphology Controlling. Wang X; Jin S; Shi L; Zhang N; Guo J; Zhang D; Liu Z ACS Appl Mater Interfaces; 2024 Jul; 16(26):33954-33962. PubMed ID: 38904988 [TBL] [Abstract][Full Text] [Related]
7. Interface Engineering for Garnet-Based Solid-State Lithium-Metal Batteries: Materials, Structures, and Characterization. Dai J; Yang C; Wang C; Pastel G; Hu L Adv Mater; 2018 Nov; 30(48):e1802068. PubMed ID: 30302834 [TBL] [Abstract][Full Text] [Related]
8. High-Performance Metal-Organic Framework-Based Single Ion Conducting Solid-State Electrolytes for Low-Temperature Lithium Metal Batteries. Zhu F; Bao H; Wu X; Tao Y; Qin C; Su Z; Kang Z ACS Appl Mater Interfaces; 2019 Nov; 11(46):43206-43213. PubMed ID: 31651145 [TBL] [Abstract][Full Text] [Related]
9. MOFs Containing Solid-State Electrolytes for Batteries. Jiang S; Lv T; Peng Y; Pang H Adv Sci (Weinh); 2023 Apr; 10(10):e2206887. PubMed ID: 36683175 [TBL] [Abstract][Full Text] [Related]
10. Rational Design of MOF-Based Materials for Next-Generation Rechargeable Batteries. Ye Z; Jiang Y; Li L; Wu F; Chen R Nanomicro Lett; 2021 Oct; 13(1):203. PubMed ID: 34611765 [TBL] [Abstract][Full Text] [Related]
11. Regulating Metal Centers of MOF-74 Promotes PEO-Based Electrolytes for All-Solid-State Lithium-Metal Batteries. Wu J; Ma Y; Zhang H; Xie H; Hu J; Shi C; Chen B; He C; Zhao N ACS Appl Mater Interfaces; 2024 Apr; 16(13):16351-16362. PubMed ID: 38515323 [TBL] [Abstract][Full Text] [Related]
12. Status and Prospect of Two-Dimensional Materials in Electrolytes for All-Solid-State Lithium Batteries. Lan X; Luo N; Li Z; Peng J; Cheng HM ACS Nano; 2024 Apr; 18(13):9285-9310. PubMed ID: 38522089 [TBL] [Abstract][Full Text] [Related]
13. Bilayer Zwitterionic Metal-Organic Framework for Selective All-Solid-State Superionic Conduction in Lithium Metal Batteries. Ouyang Y; Gong W; Zhang Q; Wang J; Guo S; Xiao Y; Li D; Wang C; Sun X; Wang C; Huang S Adv Mater; 2023 Sep; 35(39):e2304685. PubMed ID: 37344893 [TBL] [Abstract][Full Text] [Related]
14. Promises, Challenges, and Recent Progress of Inorganic Solid-State Electrolytes for All-Solid-State Lithium Batteries. Gao Z; Sun H; Fu L; Ye F; Zhang Y; Luo W; Huang Y Adv Mater; 2018 Apr; 30(17):e1705702. PubMed ID: 29468745 [TBL] [Abstract][Full Text] [Related]
15. A mini review of current studies on metal-organic frameworks-incorporated composite solid polymer electrolytes in all-solid-state lithium batteries. Le PA; Nguyen NT; Nguyen PL; Phung TVB; Do CD Heliyon; 2023 Sep; 9(9):e19746. PubMed ID: 37809844 [TBL] [Abstract][Full Text] [Related]
16. Exploring ionic liquid-laden metal-organic framework composite materials as hybrid electrolytes in metal (ion) batteries. Urgoiti-Rodriguez M; Vaquero-Vílchez S; Mirandona-Olaeta A; Fernández de Luis R; Goikolea E; Costa CM; Lanceros-Mendez S; Fidalgo-Marijuan A; Ruiz de Larramendi I Front Chem; 2022; 10():995063. PubMed ID: 36186579 [TBL] [Abstract][Full Text] [Related]
17. Review: Application of Bionic-Structured Materials in Solid-State Electrolytes for High-Performance Lithium Metal Batteries. Feng X; Deng N; Yu W; Peng Z; Su D; Kang W; Cheng B ACS Nano; 2024 Jun; 18(24):15387-15415. PubMed ID: 38843224 [TBL] [Abstract][Full Text] [Related]
18. Recent Progress of Hybrid Solid-State Electrolytes for Lithium Batteries. Liu X; Li X; Li H; Wu HB Chemistry; 2018 Dec; 24(69):18293-18306. PubMed ID: 30221404 [TBL] [Abstract][Full Text] [Related]
19. Effect of Guest Solvents on the Ionic Conductivity and Electrochemical Performance of Metal-Organic Framework-Based Magnesium Semi-Solid Electrolytes. Hassan HK; Hoffmann P; Jacob T ChemSusChem; 2024 Mar; 17(5):e202301362. PubMed ID: 37889091 [TBL] [Abstract][Full Text] [Related]
20. A 3D Cross-Linked Metal-Organic Framework (MOF)-Derived Polymer Electrolyte for Dendrite-Free Solid-State Lithium-Ion Batteries. Zhou J; Wang X; Fu J; Chen L; Wei X; Jia R; Shi L Small; 2024 May; 20(18):e2309317. PubMed ID: 38095442 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]