These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. SP-GNN: Learning structure and position information from graphs. Chen Y; You J; He J; Lin Y; Peng Y; Wu C; Zhu Y Neural Netw; 2023 Apr; 161():505-514. PubMed ID: 36805265 [TBL] [Abstract][Full Text] [Related]
6. Beyond Homophily and Homogeneity Assumption: Relation-Based Frequency Adaptive Graph Neural Networks. Wu L; Lin H; Hu B; Tan C; Gao Z; Liu Z; Li SZ IEEE Trans Neural Netw Learn Syst; 2024 Jun; 35(6):8497-8509. PubMed ID: 37018566 [TBL] [Abstract][Full Text] [Related]
7. Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive Benchmark Study. Chen T; Zhou K; Duan K; Zheng W; Wang P; Hu X; Wang Z IEEE Trans Pattern Anal Mach Intell; 2023 Mar; 45(3):2769-2781. PubMed ID: 35544513 [TBL] [Abstract][Full Text] [Related]
8. Homophily-Enhanced Self-Supervision for Graph Structure Learning: Insights and Directions. Wu L; Lin H; Liu Z; Liu Z; Huang Y; Li SZ IEEE Trans Neural Netw Learn Syst; 2024 Sep; 35(9):12358-12372. PubMed ID: 37079406 [TBL] [Abstract][Full Text] [Related]
9. Graph Transformer Networks: Learning meta-path graphs to improve GNNs. Yun S; Jeong M; Yoo S; Lee S; Yi SS; Kim R; Kang J; Kim HJ Neural Netw; 2022 Sep; 153():104-119. PubMed ID: 35716619 [TBL] [Abstract][Full Text] [Related]
10. Multiphysical graph neural network (MP-GNN) for COVID-19 drug design. Li XS; Liu X; Lu L; Hua XS; Chi Y; Xia K Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35696650 [TBL] [Abstract][Full Text] [Related]
11. Generalizing Graph Neural Networks on Out-of-Distribution Graphs. Fan S; Wang X; Shi C; Cui P; Wang B IEEE Trans Pattern Anal Mach Intell; 2024 Jan; 46(1):322-337. PubMed ID: 37782581 [TBL] [Abstract][Full Text] [Related]
12. Deep reinforcement learning guided graph neural networks for brain network analysis. Zhao X; Wu J; Peng H; Beheshti A; Monaghan JJM; McAlpine D; Hernandez-Perez H; Dras M; Dai Q; Li Y; Yu PS; He L Neural Netw; 2022 Oct; 154():56-67. PubMed ID: 35853320 [TBL] [Abstract][Full Text] [Related]
13. CCP-GNN: Competitive Covariance Pooling for Improving Graph Neural Networks. Zhu P; Li J; Dong Z; Hu Q; Wang X; Wang Q IEEE Trans Neural Netw Learn Syst; 2024 Apr; PP():. PubMed ID: 38683705 [TBL] [Abstract][Full Text] [Related]
14. Reinforced Causal Explainer for Graph Neural Networks. Wang X; Wu Y; Zhang A; Feng F; He X; Chua TS IEEE Trans Pattern Anal Mach Intell; 2023 Feb; 45(2):2297-2309. PubMed ID: 35471869 [TBL] [Abstract][Full Text] [Related]
15. Global explanation supervision for Graph Neural Networks. Etemadyrad N; Gao Y; Manoj Pudukotai Dinakarrao S; Zhao L Front Big Data; 2024; 7():1410424. PubMed ID: 39011466 [TBL] [Abstract][Full Text] [Related]
16. Uncertainty-aware multiple-instance learning for reliable classification: Application to optical coherence tomography. de Vente C; van Ginneken B; Hoyng CB; Klaver CCW; Sánchez CI Med Image Anal; 2024 Oct; 97():103259. PubMed ID: 38959721 [TBL] [Abstract][Full Text] [Related]
17. Convex formulation of multiple instance learning from positive and unlabeled bags. Bao H; Sakai T; Sato I; Sugiyama M Neural Netw; 2018 Sep; 105():132-141. PubMed ID: 29804041 [TBL] [Abstract][Full Text] [Related]
18. Evaluating graph neural networks under graph sampling scenarios. Wei Q; Hu G PeerJ Comput Sci; 2022; 8():e901. PubMed ID: 35494843 [TBL] [Abstract][Full Text] [Related]