These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38688126)

  • 1. AST: An OpenSim-based tool for the automatic scaling of generic musculoskeletal models.
    Di Pietro A; Bersani A; Curreli C; Di Puccio F
    Comput Biol Med; 2024 Jun; 175():108524. PubMed ID: 38688126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generic scaled versus subject-specific models for the calculation of musculoskeletal loading in cerebral palsy gait: Effect of personalized musculoskeletal geometry outweighs the effect of personalized neural control.
    Kainz H; Wesseling M; Jonkers I
    Clin Biomech (Bristol, Avon); 2021 Jul; 87():105402. PubMed ID: 34098149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of scaling errors of the thigh and shank segments on musculoskeletal simulation results.
    Koller W; Baca A; Kainz H
    Gait Posture; 2021 Jun; 87():65-74. PubMed ID: 33894464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing three generic musculoskeletal models to estimate the tibiofemoral reaction forces during gait and sit-to-stand tasks.
    Pelegrinelli ARM; Catelli DS; Kowalski E; Lamontagne M; Moura FA
    Med Eng Phys; 2023 Dec; 122():104074. PubMed ID: 38092489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative assessment of bone pose estimation using Point Cluster Technique and OpenSim.
    Lathrop RL; Chaudhari AM; Siston RA
    J Biomech Eng; 2011 Nov; 133(11):114503. PubMed ID: 22168744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A generic musculoskeletal model of the juvenile lower limb for biomechanical analyses of gait.
    Hainisch R; Kranzl A; Lin YC; Pandy MG; Gfoehler M
    Comput Methods Biomech Biomed Engin; 2021 Mar; 24(4):349-357. PubMed ID: 32940060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shape model constrained scaling improves repeatability of gait data.
    Bakke D; Besier T
    J Biomech; 2020 Jun; 107():109838. PubMed ID: 32517858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accuracy and Reliability of Marker-Based Approaches to Scale the Pelvis, Thigh, and Shank Segments in Musculoskeletal Models.
    Kainz H; Hoang HX; Stockton C; Boyd RR; Lloyd DG; Carty CP
    J Appl Biomech; 2017 Oct; 33(5):354-360. PubMed ID: 28290736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of maximum isometric muscle force scaling on estimated muscle forces from musculoskeletal models of children with cerebral palsy.
    Kainz H; Goudriaan M; Falisse A; Huenaerts C; Desloovere K; De Groote F; Jonkers I
    Gait Posture; 2018 Sep; 65():213-220. PubMed ID: 30558934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The importance of a consistent workflow to estimate muscle-tendon lengths based on joint angles from the conventional gait model.
    Kainz H; Schwartz MH
    Gait Posture; 2021 Jul; 88():1-9. PubMed ID: 33933913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Method for Using IMU-Based Experimental Motion Data in BVH Format for Musculoskeletal Simulations via OpenSim.
    Wechsler I; Wolf A; Fleischmann S; Waibel J; Molz C; Scherb D; Shanbhag J; Franz M; Wartzack S; Miehling J
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dependency of lower limb joint reaction forces on femoral version.
    Modenese L; Barzan M; Carty CP
    Gait Posture; 2021 Jul; 88():318-321. PubMed ID: 34246172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AddBiomechanics: Automating model scaling, inverse kinematics, and inverse dynamics from human motion data through sequential optimization.
    Werling K; Bianco NA; Raitor M; Stingel J; Hicks JL; Collins SH; Delp SL; Liu CK
    PLoS One; 2023; 18(11):e0295152. PubMed ID: 38033114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A subject-specific musculoskeletal modeling framework to predict in vivo mechanics of total knee arthroplasty.
    Marra MA; Vanheule V; Fluit R; Koopman BH; Rasmussen J; Verdonschot N; Andersen MS
    J Biomech Eng; 2015 Feb; 137(2):020904. PubMed ID: 25429519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscle force estimation in clinical gait analysis using AnyBody and OpenSim.
    Trinler U; Schwameder H; Baker R; Alexander N
    J Biomech; 2019 Mar; 86():55-63. PubMed ID: 30739769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interpreting Musculoskeletal Models and Dynamic Simulations: Causes and Effects of Differences Between Models.
    Roelker SA; Caruthers EJ; Baker RK; Pelz NC; Chaudhari AMW; Siston RA
    Ann Biomed Eng; 2017 Nov; 45(11):2635-2647. PubMed ID: 28779473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [LLMKA: A Matlab-based toolbox for musculoskeletal kinematics analysis of lower limbs].
    Li S; Nie Y; Wang J; Li K; Shen B
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2022 May; 36(5):525-533. PubMed ID: 35570624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of a method to scale muscle strength for gait simulations of children with cerebral palsy.
    Hegarty AK; Hulbert TV; Kurz MJ; Stuberg W; Silverman AK
    J Biomech; 2019 Jan; 83():165-173. PubMed ID: 30545605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-level personalization of neuromusculoskeletal models to estimate physiologically plausible knee joint contact forces in children.
    Davico G; Lloyd DG; Carty CP; Killen BA; Devaprakash D; Pizzolato C
    Biomech Model Mechanobiol; 2022 Dec; 21(6):1873-1886. PubMed ID: 36229699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting Knee Joint Contact Forces During Normal Walking Using Kinematic Inputs With a Long-Short Term Neural Network.
    Bennett HJ; Estler K; Valenzuela K; Weinhandl JT
    J Biomech Eng; 2024 Aug; 146(8):. PubMed ID: 38270972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.