These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 38688253)
1. Exploring the interplay between the TGF- Moraes-Lacerda T; Garcia-Fossa F; de Jesus MB Nanotechnology; 2024 May; 35(32):. PubMed ID: 38688253 [TBL] [Abstract][Full Text] [Related]
2. Role of endocytic uptake in transfection efficiency of solid lipid nanoparticles-based nonviral vectors. Ruiz de Garibay AP; Solinís Aspiazu MÁ; Rodríguez Gascón A; Ganjian H; Fuchs R J Gene Med; 2013; 15(11-12):427-40. PubMed ID: 24339018 [TBL] [Abstract][Full Text] [Related]
3. Inclusion of the helper lipid dioleoyl-phosphatidylethanolamine in solid lipid nanoparticles inhibits their transfection efficiency. de Jesus MB; Radaic A; Hinrichs WL; Ferreira CV; de Paula E; Hoekstra D; Zuhorn IS J Biomed Nanotechnol; 2014 Feb; 10(2):355-65. PubMed ID: 24738343 [TBL] [Abstract][Full Text] [Related]
4. Cationic solid lipid nanoparticles (SLN) complexed with plasmid DNA enhance prostate cancer cells (PC-3) migration. Garcia-Fossa F; de Jesus MB Nanotoxicology; 2024 Feb; 18(1):36-54. PubMed ID: 38300021 [TBL] [Abstract][Full Text] [Related]
5. Design flexibility influencing the in vitro behavior of cationic SLN as a nonviral gene vector. Vighi E; Montanari M; Hanuskova M; Iannuccelli V; Coppi G; Leo E Int J Pharm; 2013 Jan; 440(2):161-9. PubMed ID: 22982257 [TBL] [Abstract][Full Text] [Related]
6. Solid lipid nanoparticles release DNA upon endosomal acidification in human embryonic kidney cells. Radaic A; de Jesus MB Nanotechnology; 2018 Aug; 29(31):315102. PubMed ID: 29756603 [TBL] [Abstract][Full Text] [Related]
7. Factorial Design and Development of Solid Lipid Nanoparticles (SLN) for Gene Delivery. Radaic A; de Paula E; de Jesus MB J Nanosci Nanotechnol; 2015 Feb; 15(2):1793-800. PubMed ID: 26353734 [TBL] [Abstract][Full Text] [Related]
8. TGF-beta signaling and androgen receptor status determine apoptotic cross-talk in human prostate cancer cells. Zhu ML; Partin JV; Bruckheimer EM; Strup SE; Kyprianou N Prostate; 2008 Feb; 68(3):287-95. PubMed ID: 18163430 [TBL] [Abstract][Full Text] [Related]
10. Protein kinase A inhibition modulates the intracellular routing of gene delivery vehicles in HeLa cells, leading to productive transfection. ur Rehman Z; Hoekstra D; Zuhorn IS J Control Release; 2011 Nov; 156(1):76-84. PubMed ID: 21787817 [TBL] [Abstract][Full Text] [Related]
11. Novel cationic solid-lipid nanoparticles as non-viral vectors for gene delivery. Bondi ML; Azzolina A; Craparo EF; Lampiasi N; Capuano G; Giammona G; Cervello M J Drug Target; 2007 May; 15(4):295-301. PubMed ID: 17487698 [TBL] [Abstract][Full Text] [Related]
12. Novel permissive role of epidermal growth factor in transforming growth factor beta (TGF-beta) signaling and growth suppression. Mediation by stabilization of TGF-beta receptor type II. Song K; Krebs TL; Danielpour D J Biol Chem; 2006 Mar; 281(12):7765-74. PubMed ID: 16428382 [TBL] [Abstract][Full Text] [Related]
13. Nuclear localization of cationic solid lipid nanoparticles containing Protamine as transfection promoter. Vighi E; Montanari M; Ruozi B; Tosi G; Magli A; Leo E Eur J Pharm Biopharm; 2010 Nov; 76(3):384-93. PubMed ID: 20691262 [TBL] [Abstract][Full Text] [Related]
14. MicroRNA-200c delivered by solid lipid nanoparticles enhances the effect of paclitaxel on breast cancer stem cell. Liu J; Meng T; Yuan M; Wen L; Cheng B; Liu N; Huang X; Hong Y; Yuan H; Hu F Int J Nanomedicine; 2016; 11():6713-6725. PubMed ID: 28003747 [TBL] [Abstract][Full Text] [Related]
15. Restoration of transforming growth factor beta signaling pathway in human prostate cancer cells suppresses tumorigenicity via induction of caspase-1-mediated apoptosis. Guo Y; Kyprianou N Cancer Res; 1999 Mar; 59(6):1366-71. PubMed ID: 10096572 [TBL] [Abstract][Full Text] [Related]
16. Development and characterization of an improved formulation of cholesteryl oleate-loaded cationic solid-lipid nanoparticles as an efficient non-viral gene delivery system. Limeres MJ; Suñé-Pou M; Prieto-Sánchez S; Moreno-Castro C; Nusblat AD; Hernández-Munain C; Castro GR; Suñé C; Suñé-Negre JM; Cuestas ML Colloids Surf B Biointerfaces; 2019 Dec; 184():110533. PubMed ID: 31593829 [TBL] [Abstract][Full Text] [Related]
17. pDNA condensation capacity and in vitro gene delivery properties of cationic solid lipid nanoparticles. Vighi E; Ruozi B; Montanari M; Battini R; Leo E Int J Pharm; 2010 Apr; 389(1-2):254-61. PubMed ID: 20100555 [TBL] [Abstract][Full Text] [Related]
18. Endocytic Profiling of Cancer Cell Models Reveals Critical Factors Influencing LNP-Mediated mRNA Delivery and Protein Expression. Sayers EJ; Peel SE; Schantz A; England RM; Beano M; Bates SM; Desai AS; Puri S; Ashford MB; Jones AT Mol Ther; 2019 Nov; 27(11):1950-1962. PubMed ID: 31427168 [TBL] [Abstract][Full Text] [Related]
19. Overexpression of transforming growth factor (TGF) beta1 type II receptor restores TGF-beta1 sensitivity and signaling in human prostate cancer cells. Guo Y; Kyprianou N Cell Growth Differ; 1998 Feb; 9(2):185-93. PubMed ID: 9486855 [TBL] [Abstract][Full Text] [Related]
20. Mechanisms of solid lipid nanoparticles-triggered signaling pathways in eukaryotic cells. Moraes-Lacerda T; de Jesus MB Colloids Surf B Biointerfaces; 2022 Dec; 220():112863. PubMed ID: 36272282 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]