These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 38688253)
41. Solid lipid nanoparticles as nucleic acid delivery system: properties and molecular mechanisms. de Jesus MB; Zuhorn IS J Control Release; 2015 Mar; 201():1-13. PubMed ID: 25578828 [TBL] [Abstract][Full Text] [Related]
42. TMPRSS2:ERG gene fusion variants induce TGF-β signaling and epithelial to mesenchymal transition in human prostate cancer cells. Ratz L; Laible M; Kacprzyk LA; Wittig-Blaich SM; Tolstov Y; Duensing S; Altevogt P; Klauck SM; Sültmann H Oncotarget; 2017 Apr; 8(15):25115-25130. PubMed ID: 28445989 [TBL] [Abstract][Full Text] [Related]
43. Evaluation of cellular uptake and intracellular trafficking as determining factors of gene expression for amino acid-substituted gemini surfactant-based DNA nanoparticles. Singh J; Michel D; Chitanda JM; Verrall RE; Badea I J Nanobiotechnology; 2012 Feb; 10():7. PubMed ID: 22296763 [TBL] [Abstract][Full Text] [Related]
44. Preparation and cytotoxicity of 2-methoxyestradiol-loaded solid lipid nanoparticles. Guo X; Xing Y; Mei Q; Zhang H; Zhang Z; Cui F Anticancer Drugs; 2012 Feb; 23(2):185-90. PubMed ID: 22027535 [TBL] [Abstract][Full Text] [Related]
45. Interleukin-6 regulation of transforming growth factor (TGF)-beta receptor compartmentalization and turnover enhances TGF-beta1 signaling. Zhang XL; Topley N; Ito T; Phillips A J Biol Chem; 2005 Apr; 280(13):12239-45. PubMed ID: 15661740 [TBL] [Abstract][Full Text] [Related]
46. Folate receptor-mediated delivery of mitoxantrone-loaded solid lipid nanoparticles to breast cancer cells. Granja A; Nunes C; Sousa CT; Reis S Biomed Pharmacother; 2022 Oct; 154():113525. PubMed ID: 36049314 [TBL] [Abstract][Full Text] [Related]
47. Understanding the mechanism of protamine in solid lipid nanoparticle-based lipofection: the importance of the entry pathway. Delgado D; del Pozo-Rodríguez A; Solinís MÁ; Rodríguez-Gascón A Eur J Pharm Biopharm; 2011 Nov; 79(3):495-502. PubMed ID: 21726641 [TBL] [Abstract][Full Text] [Related]
48. The evidence for solid lipid nanoparticles mediated cell uptake of resveratrol. Teskac K; Kristl J Int J Pharm; 2010 May; 390(1):61-9. PubMed ID: 19833178 [TBL] [Abstract][Full Text] [Related]
49. Coculture with prostate cancer cells alters endoglin expression and attenuates transforming growth factor-beta signaling in reactive bone marrow stromal cells. O'Connor JC; Farach-Carson MC; Schneider CJ; Carson DD Mol Cancer Res; 2007 Jun; 5(6):585-603. PubMed ID: 17579118 [TBL] [Abstract][Full Text] [Related]
50. The estrogen receptor signaling pathway activated by phthalates is linked with transforming growth factor-β in the progression of LNCaP prostate cancer models. Lee HR; Hwang KA; Choi KC Int J Oncol; 2014 Aug; 45(2):595-602. PubMed ID: 24858230 [TBL] [Abstract][Full Text] [Related]
51. TGF-betal/Smad signaling in prostate cancer. Bello-DeOcampo D; Tindall DJ Curr Drug Targets; 2003 Apr; 4(3):197-207. PubMed ID: 12643470 [TBL] [Abstract][Full Text] [Related]
52. Cellular uptake of solid lipid nanoparticles and cytotoxicity of encapsulated paclitaxel in A549 cancer cells. Yuan H; Miao J; Du YZ; You J; Hu FQ; Zeng S Int J Pharm; 2008 Feb; 348(1-2):137-45. PubMed ID: 17714896 [TBL] [Abstract][Full Text] [Related]
53. Decapeptide Modified Doxorubicin Loaded Solid Lipid Nanoparticles as Targeted Drug Delivery System against Prostate Cancer. De K Langmuir; 2021 Nov; 37(45):13194-13207. PubMed ID: 34723562 [TBL] [Abstract][Full Text] [Related]
54. Novel approach for overcoming the stability challenges of lipid-based excipients. Part 3: Application of polyglycerol esters of fatty acids for the next generation of solid lipid nanoparticles. Corzo C; Meindl C; Lochmann D; Reyer S; Salar-Behzadi S Eur J Pharm Biopharm; 2020 Jul; 152():44-55. PubMed ID: 32387704 [TBL] [Abstract][Full Text] [Related]
55. PDGF receptor-α promotes TGF-β signaling in hepatic stellate cells via transcriptional and posttranscriptional regulation of TGF-β receptors. Liu C; Li J; Xiang X; Guo L; Tu K; Liu Q; Shah VH; Kang N Am J Physiol Gastrointest Liver Physiol; 2014 Oct; 307(7):G749-59. PubMed ID: 25169976 [TBL] [Abstract][Full Text] [Related]
56. The role of helper lipids in the intracellular disposition and transfection efficiency of niosome formulations for gene delivery to retinal pigment epithelial cells. Ojeda E; Puras G; Agirre M; Zarate J; Grijalvo S; Eritja R; DiGiacomo L; Caracciolo G; Pedraz JL Int J Pharm; 2016 Apr; 503(1-2):115-26. PubMed ID: 26956159 [TBL] [Abstract][Full Text] [Related]
57. Dp44mT targets the AKT, TGF-β and ERK pathways via the metastasis suppressor NDRG1 in normal prostate epithelial cells and prostate cancer cells. Dixon KM; Lui GY; Kovacevic Z; Zhang D; Yao M; Chen Z; Dong Q; Assinder SJ; Richardson DR Br J Cancer; 2013 Feb; 108(2):409-19. PubMed ID: 23287991 [TBL] [Abstract][Full Text] [Related]
58. Solid lipid nanoparticles of cholesteryl butyrate inhibit the proliferation of cancer cells in vitro and in vivo models. Minelli R; Occhipinti S; Gigliotti CL; Barrera G; Gasco P; Conti L; Chiocchetti A; Zara GP; Fantozzi R; Giovarelli M; Dianzani U; Dianzani C Br J Pharmacol; 2013 Sep; 170(2):233-44. PubMed ID: 23713413 [TBL] [Abstract][Full Text] [Related]
59. Delivery of retinoic acid to LNCap human prostate cancer cells using solid lipid nanoparticles. Akanda MH; Rai R; Slipper IJ; Chowdhry BZ; Lamprou D; Getti G; Douroumis D Int J Pharm; 2015 Sep; 493(1-2):161-71. PubMed ID: 26200751 [TBL] [Abstract][Full Text] [Related]
60. microRNA and non-canonical TGF-β signalling: implications for prostate cancer therapy. Ottley E; Gold E Crit Rev Oncol Hematol; 2014 Oct; 92(1):49-60. PubMed ID: 24985060 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]