These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 38688292)
1. Texture-preserving low dose CT image denoising using Pearson divergence. Oh J; Wu D; Hong B; Lee D; Kang M; Li Q; Kim K Phys Med Biol; 2024 May; 69(11):. PubMed ID: 38688292 [No Abstract] [Full Text] [Related]
2. Unpaired low-dose computed tomography image denoising using a progressive cyclical convolutional neural network. Li Q; Li R; Li S; Wang T; Cheng Y; Zhang S; Wu W; Zhao J; Qiang Y; Wang L Med Phys; 2024 Feb; 51(2):1289-1312. PubMed ID: 36841936 [TBL] [Abstract][Full Text] [Related]
3. Low-Dose CT Image Denoising Using a Generative Adversarial Network With Wasserstein Distance and Perceptual Loss. Yang Q; Yan P; Zhang Y; Yu H; Shi Y; Mou X; Kalra MK; Zhang Y; Sun L; Wang G IEEE Trans Med Imaging; 2018 Jun; 37(6):1348-1357. PubMed ID: 29870364 [TBL] [Abstract][Full Text] [Related]
4. A performance comparison of convolutional neural network-based image denoising methods: The effect of loss functions on low-dose CT images. Kim B; Han M; Shim H; Baek J Med Phys; 2019 Sep; 46(9):3906-3923. PubMed ID: 31306488 [TBL] [Abstract][Full Text] [Related]
5. Adapting low-dose CT denoisers for texture preservation using zero-shot local noise-level matching. Ko Y; Song S; Baek J; Shim H Med Phys; 2024 Jun; 51(6):4181-4200. PubMed ID: 38478305 [TBL] [Abstract][Full Text] [Related]
6. Artifact correction in low-dose dental CT imaging using Wasserstein generative adversarial networks. Hu Z; Jiang C; Sun F; Zhang Q; Ge Y; Yang Y; Liu X; Zheng H; Liang D Med Phys; 2019 Apr; 46(4):1686-1696. PubMed ID: 30697765 [TBL] [Abstract][Full Text] [Related]
7. Self-adaption and texture generation: A hybrid loss function for low-dose CT denoising. Wang Z; Liu M; Cheng X; Zhu J; Wang X; Gong H; Liu M; Xu L J Appl Clin Med Phys; 2023 Sep; 24(9):e14113. PubMed ID: 37571834 [TBL] [Abstract][Full Text] [Related]
8. Learning low-dose CT degradation from unpaired data with flow-based model. Liu X; Liang X; Deng L; Tan S; Xie Y Med Phys; 2022 Dec; 49(12):7516-7530. PubMed ID: 35880375 [TBL] [Abstract][Full Text] [Related]
9. Reducing the risk of hallucinations with interpretable deep learning models for low-dose CT denoising: comparative performance analysis. Patwari M; Gutjahr R; Marcus R; Thali Y; Calvarons AF; Raupach R; Maier A Phys Med Biol; 2023 Oct; 68(19):. PubMed ID: 37733068 [No Abstract] [Full Text] [Related]
10. STEDNet: Swin transformer-based encoder-decoder network for noise reduction in low-dose CT. Zhu L; Han Y; Xi X; Fu H; Tan S; Liu M; Yang S; Liu C; Li L; Yan B Med Phys; 2023 Jul; 50(7):4443-4458. PubMed ID: 36708286 [TBL] [Abstract][Full Text] [Related]
11. Texture transformer super-resolution for low-dose computed tomography. Zhou S; Yu L; Jin M Biomed Phys Eng Express; 2022 Nov; 8(6):. PubMed ID: 36301699 [TBL] [Abstract][Full Text] [Related]
12. Image denoising by transfer learning of generative adversarial network for dental CT. Hegazy MAA; Cho MH; Lee SY Biomed Phys Eng Express; 2020 Sep; 6(5):055024. PubMed ID: 33444255 [TBL] [Abstract][Full Text] [Related]
13. Multi-scale feature aggregation and fusion network with self-supervised multi-level perceptual loss for textures preserving low-dose CT denoising. Zhang Y; Wan Z; Wang D; Meng J; Ma F; Guo Y; Liu J; Li G; Liu Y Phys Med Biol; 2024 Apr; 69(10):. PubMed ID: 38593821 [No Abstract] [Full Text] [Related]
14. Two stage residual CNN for texture denoising and structure enhancement on low dose CT image. Huang L; Jiang H; Li S; Bai Z; Zhang J Comput Methods Programs Biomed; 2020 Feb; 184():105115. PubMed ID: 31627148 [TBL] [Abstract][Full Text] [Related]
16. Incorporation of residual attention modules into two neural networks for low-dose CT denoising. Li M; Du Q; Duan L; Yang X; Zheng J; Jiang H; Li M Med Phys; 2021 Jun; 48(6):2973-2990. PubMed ID: 33890681 [TBL] [Abstract][Full Text] [Related]
17. Texture-aware dual domain mapping model for low-dose CT reconstruction. Wang H; Zhao X; Liu W; Li LC; Ma J; Guo L Med Phys; 2022 Jun; 49(6):3860-3873. PubMed ID: 35297051 [TBL] [Abstract][Full Text] [Related]
19. Performance of a deep learning-based CT image denoising method: Generalizability over dose, reconstruction kernel, and slice thickness. Zeng R; Lin CY; Li Q; Jiang L; Skopec M; Fessler JA; Myers KJ Med Phys; 2022 Feb; 49(2):836-853. PubMed ID: 34954845 [TBL] [Abstract][Full Text] [Related]
20. A Review of deep learning methods for denoising of medical low-dose CT images. Zhang J; Gong W; Ye L; Wang F; Shangguan Z; Cheng Y Comput Biol Med; 2024 Mar; 171():108112. PubMed ID: 38387380 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]