These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 38688899)

  • 1. Biocomposite thermoplastic polyurethanes containing evolved bacterial spores as living fillers to facilitate polymer disintegration.
    Kim HS; Noh MH; White EM; Kandefer MV; Wright AF; Datta D; Lim HG; Smiggs E; Locklin JJ; Rahman MA; Feist AM; Pokorski JK
    Nat Commun; 2024 Apr; 15(1):3338. PubMed ID: 38688899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Properties of shape memory polyurethane used as a low-temperature thermoplastic biomedical orthotic material: influence of hard segment content.
    Meng Q; Hu J; Zhu Y
    J Biomater Sci Polym Ed; 2008; 19(11):1437-54. PubMed ID: 18973722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and characterization of thermoplastic polyurethanes blended with chitosan and starch processed through extrusion.
    Amjed N; Bhatti IA; Simon L; Castel CD; Zia KM; Zuber M; Hafiz I; Murtaza MA
    Int J Biol Macromol; 2022 May; 208():37-44. PubMed ID: 35257731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of electrospun thermoplastic polyurethane blended poly (l-lactide-co-e-caprolactone) microyarn scaffolds for engineering of female pelvic-floor tissue.
    Hou M; Wu Q; Dai M; Xu P; Gu C; Jia X; Feng J; Mo X
    Biomed Mater; 2014 Dec; 10(1):015005. PubMed ID: 25546879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Green TPUs from Prepolymer Mixtures Designed by Controlling the Chemical Structure of Flexible Segments.
    Kasprzyk P; Głowińska E; Parcheta-Szwindowska P; Rohde K; Datta J
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel layer-by-layer procedure for making nylon-6 nanofiber reinforced high strength, tough, and transparent thermoplastic polyurethane composites.
    Jiang S; Duan G; Hou H; Greiner A; Agarwal S
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):4366-72. PubMed ID: 22817392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polysiloxane-Based Polyurethanes with High Strength and Recyclability.
    Wang W; Bai X; Sun S; Gao Y; Li F; Hu S
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering Bacillus subtilis for the formation of a durable living biocomposite material.
    Kang SY; Pokhrel A; Bratsch S; Benson JJ; Seo SO; Quin MB; Aksan A; Schmidt-Dannert C
    Nat Commun; 2021 Dec; 12(1):7133. PubMed ID: 34880257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of ordered mesoporous and macroporous thermoplastic polyurethane surfaces for potential medical applications.
    Chennell P; Feschet-Chassot E; Sautou V; Mailhot-Jensen B
    J Biomater Appl; 2018 May; 32(10):1317-1328. PubMed ID: 29631458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrophilic thermoplastic polyurethanes for the manufacturing of highly dosed oral sustained release matrices via hot melt extrusion and injection molding.
    Verstraete G; Van Renterghem J; Van Bockstal PJ; Kasmi S; De Geest BG; De Beer T; Remon JP; Vervaet C
    Int J Pharm; 2016 Jun; 506(1-2):214-21. PubMed ID: 27113866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparative study between melt granulation/compression and hot melt extrusion/injection molding for the manufacturing of oral sustained release thermoplastic polyurethane matrices.
    Verstraete G; Mertens P; Grymonpré W; Van Bockstal PJ; De Beer T; Boone MN; Van Hoorebeke L; Remon JP; Vervaet C
    Int J Pharm; 2016 Nov; 513(1-2):602-611. PubMed ID: 27686052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding.
    Mi HY; Salick MR; Jing X; Jacques BR; Crone WC; Peng XF; Turng LS
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4767-76. PubMed ID: 24094186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bactericidal ZnO glass-filled thermoplastic polyurethane and polydimethyl siloxane composites to inhibit biofilm-associated infections.
    Cabal B; Sevillano D; Fernández-García E; Alou L; Suárez M; González N; Moya JS; Torrecillas R
    Sci Rep; 2019 Feb; 9(1):2762. PubMed ID: 30808968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A low-temperature thermoplastic anti-bacterial medical orthotic material made of shape memory polyurethane ionomer: influence of ionic group.
    Meng Q; Hu J; Liu B; Zhu Y
    J Biomater Sci Polym Ed; 2009; 20(2):199-218. PubMed ID: 19154670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term in vitro hydrolytic stability of thermoplastic polyurethanes.
    Mishra A; Seethamraju K; Delaney J; Willoughby P; Faust R
    J Biomed Mater Res A; 2015 Dec; 103(12):3798-806. PubMed ID: 26097127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Small caliber vascular grafts. Part II: Polyurethanes revisited.
    Zdrahala RJ
    J Biomater Appl; 1996 Jul; 11(1):37-61. PubMed ID: 8872599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermoplastic polyurethanes for the manufacturing of highly dosed oral sustained release matrices via hot melt extrusion and injection molding.
    Claeys B; Vervaeck A; Hillewaere XK; Possemiers S; Hansen L; De Beer T; Remon JP; Vervaet C
    Eur J Pharm Biopharm; 2015 Feb; 90():44-52. PubMed ID: 25448075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manipulating the structure and mechanical properties of thermoplastic polyurethane/polycaprolactone hybrid small diameter vascular scaffolds fabricated via electrospinning using an assembled rotating collector.
    Mi HY; Jing X; Yu E; Wang X; Li Q; Turng LS
    J Mech Behav Biomed Mater; 2018 Feb; 78():433-441. PubMed ID: 29227904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermoplastic biodegradable polyurethanes: the effect of chain extender structure on properties and in-vitro degradation.
    Tatai L; Moore TG; Adhikari R; Malherbe F; Jayasekara R; Griffiths I; Gunatillake PA
    Biomaterials; 2007 Dec; 28(36):5407-17. PubMed ID: 17915310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).
    Velbel MA; Cockell CS; Glavin DP; Marty B; Regberg AB; Smith AL; Tosca NJ; Wadhwa M; Kminek G; Meyer MA; Beaty DW; Carrier BL; Haltigin T; Hays LE; Agee CB; Busemann H; Cavalazzi B; Debaille V; Grady MM; Hauber E; Hutzler A; McCubbin FM; Pratt LM; Smith CL; Summons RE; Swindle TD; Tait KT; Udry A; Usui T; Westall F; Zorzano MP
    Astrobiology; 2022 Jun; 22(S1):S112-S164. PubMed ID: 34904892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.