BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 38689321)

  • 1. Developing and validating a clinlabomics-based machine-learning model for early detection of retinal detachment in patients with high myopia.
    Li S; Li M; Wu J; Li Y; Han J; Song Y; Cao W; Zhou X
    J Transl Med; 2024 Apr; 22(1):405. PubMed ID: 38689321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and validation of a routine blood parameters-based model for screening the occurrence of retinal detachment in high myopia in the context of PPPM.
    Li S; Li M; Wu J; Li Y; Han J; Cao W; Zhou X
    EPMA J; 2023 Jun; 14(2):219-233. PubMed ID: 37275550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction?
    Anderson AB; Grazal CF; Balazs GC; Potter BK; Dickens JF; Forsberg JA
    Clin Orthop Relat Res; 2020 Jul; 478(7):0-1618. PubMed ID: 32282466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of myopia development among Chinese school-aged children using refraction data from electronic medical records: A retrospective, multicentre machine learning study.
    Lin H; Long E; Ding X; Diao H; Chen Z; Liu R; Huang J; Cai J; Xu S; Zhang X; Wang D; Chen K; Yu T; Wu D; Zhao X; Liu Z; Wu X; Jiang Y; Yang X; Cui D; Liu W; Zheng Y; Luo L; Wang H; Chan CC; Morgan IG; He M; Liu Y
    PLoS Med; 2018 Nov; 15(11):e1002674. PubMed ID: 30399150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine Learning Approach for Intraocular Disease Prediction Based on Aqueous Humor Immune Mediator Profiles.
    Nezu N; Usui Y; Saito A; Shimizu H; Asakage M; Yamakawa N; Tsubota K; Wakabayashi Y; Narimatsu A; Umazume K; Maruyama K; Sugimoto M; Kuroda M; Goto H
    Ophthalmology; 2021 Aug; 128(8):1197-1208. PubMed ID: 33484732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting the risk of emergency admission with machine learning: Development and validation using linked electronic health records.
    Rahimian F; Salimi-Khorshidi G; Payberah AH; Tran J; Ayala Solares R; Raimondi F; Nazarzadeh M; Canoy D; Rahimi K
    PLoS Med; 2018 Nov; 15(11):e1002695. PubMed ID: 30458006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retinal photograph-based deep learning algorithms for myopia and a blockchain platform to facilitate artificial intelligence medical research: a retrospective multicohort study.
    Tan TE; Anees A; Chen C; Li S; Xu X; Li Z; Xiao Z; Yang Y; Lei X; Ang M; Chia A; Lee SY; Wong EYM; Yeo IYS; Wong YL; Hoang QV; Wang YX; Bikbov MM; Nangia V; Jonas JB; Chen YP; Wu WC; Ohno-Matsui K; Rim TH; Tham YC; Goh RSM; Lin H; Liu H; Wang N; Yu W; Tan DTH; Schmetterer L; Cheng CY; Chen Y; Wong CW; Cheung GCM; Saw SM; Wong TY; Liu Y; Ting DSW
    Lancet Digit Health; 2021 May; 3(5):e317-e329. PubMed ID: 33890579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can Machine-learning Algorithms Predict Early Revision TKA in the Danish Knee Arthroplasty Registry?
    El-Galaly A; Grazal C; Kappel A; Nielsen PT; Jensen SL; Forsberg JA
    Clin Orthop Relat Res; 2020 Sep; 478(9):2088-2101. PubMed ID: 32667760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning classifiers-based prediction of normal-tension glaucoma progression in young myopic patients.
    Lee J; Kim YK; Jeoung JW; Ha A; Kim YW; Park KH
    Jpn J Ophthalmol; 2020 Jan; 64(1):68-76. PubMed ID: 31848786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes.
    Ting DSW; Cheung CY; Lim G; Tan GSW; Quang ND; Gan A; Hamzah H; Garcia-Franco R; San Yeo IY; Lee SY; Wong EYM; Sabanayagam C; Baskaran M; Ibrahim F; Tan NC; Finkelstein EA; Lamoureux EL; Wong IY; Bressler NM; Sivaprasad S; Varma R; Jonas JB; He MG; Cheng CY; Cheung GCM; Aung T; Hsu W; Lee ML; Wong TY
    JAMA; 2017 Dec; 318(22):2211-2223. PubMed ID: 29234807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of Neurological Outcomes in Out-of-hospital Cardiac Arrest Survivors Immediately after Return of Spontaneous Circulation: Ensemble Technique with Four Machine Learning Models.
    Heo JH; Kim T; Shin J; Suh GJ; Kim J; Jung YS; Park SM; Kim S;
    J Korean Med Sci; 2021 Jul; 36(28):e187. PubMed ID: 34282605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning-based risk prediction of malignant arrhythmia in hospitalized patients with heart failure.
    Wang Q; Li B; Chen K; Yu F; Su H; Hu K; Liu Z; Wu G; Yan J; Su G
    ESC Heart Fail; 2021 Dec; 8(6):5363-5371. PubMed ID: 34585531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of machine learning model to predict osteoporosis based on abdominal computed tomography images of the psoas muscle: a retrospective study.
    Huang CB; Hu JS; Tan K; Zhang W; Xu TH; Yang L
    BMC Geriatr; 2022 Oct; 22(1):796. PubMed ID: 36229793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multimodal Machine Learning Using Visual Fields and Peripapillary Circular OCT Scans in Detection of Glaucomatous Optic Neuropathy.
    Xiong J; Li F; Song D; Tang G; He J; Gao K; Zhang H; Cheng W; Song Y; Lin F; Hu K; Wang P; Olivia Li JP; Aung T; Qiao Y; Zhang X; Ting D
    Ophthalmology; 2022 Feb; 129(2):171-180. PubMed ID: 34339778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine Learning-Based Prediction of Elevated PTH Levels Among the US General Population.
    Kato H; Hoshino Y; Hidaka N; Ito N; Makita N; Nangaku M; Inoue K
    J Clin Endocrinol Metab; 2022 Nov; 107(12):3222-3230. PubMed ID: 36125184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological signatures and prediction of an immunosuppressive status-persistent critical illness-among orthopedic trauma patients using machine learning techniques.
    Lei M; Han Z; Wang S; Guo C; Zhang X; Song Y; Lin F; Huang T
    Front Immunol; 2022; 13():979877. PubMed ID: 36325351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application and Clinical Value of Machine Learning-Based Cervical Cancer Diagnosis and Prediction Model in Adjuvant Chemotherapy for Cervical Cancer: A Single-Center, Controlled, Non-Arbitrary Size Case-Control Study.
    Wang Y; Shen L; Jin J; Wang G
    Contrast Media Mol Imaging; 2022; 2022():2432291. PubMed ID: 35821886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine Learning Approaches to Predict 6-Month Mortality Among Patients With Cancer.
    Parikh RB; Manz C; Chivers C; Regli SH; Braun J; Draugelis ME; Schuchter LM; Shulman LN; Navathe AS; Patel MS; O'Connor NR
    JAMA Netw Open; 2019 Oct; 2(10):e1915997. PubMed ID: 31651973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic Medical Record-Based Machine Learning Approach to Predict the Risk of 30-Day Adverse Cardiac Events After Invasive Coronary Treatment: Machine Learning Model Development and Validation.
    Kwon O; Na W; Kang H; Jun TJ; Kweon J; Park GM; Cho Y; Hur C; Chae J; Kang DY; Lee PH; Ahn JM; Park DW; Kang SJ; Lee SW; Lee CW; Park SW; Park SJ; Yang DH; Kim YH
    JMIR Med Inform; 2022 May; 10(5):e26801. PubMed ID: 35544292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction Model of Ocular Metastases in Gastric Adenocarcinoma: Machine Learning-Based Development and Interpretation Study.
    Zou J; Shen YK; Wu SN; Wei H; Li QJ; Xu SH; Ling Q; Kang M; Liu ZL; Huang H; Chen X; Wang YX; Liao XL; Tan G; Shao Y
    Technol Cancer Res Treat; 2024; 23():15330338231219352. PubMed ID: 38233736
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.