These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

480 related articles for article (PubMed ID: 38689495)

  • 21. Expression of a Trichoderma reesei β-1,4 endo-xylanase in tall fescue modifies cell wall structure and digestibility and elicits pathogen defence responses.
    Buanafina MM; Langdon T; Dalton S; Morris P
    Planta; 2012 Dec; 236(6):1757-74. PubMed ID: 22878642
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Post-Translational Modifications of Proteins Have Versatile Roles in Regulating Plant Immune Responses.
    Yin J; Yi H; Chen X; Wang J
    Int J Mol Sci; 2019 Jun; 20(11):. PubMed ID: 31181758
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Understanding and Exploiting Post-Translational Modifications for Plant Disease Resistance.
    Gough C; Sadanandom A
    Biomolecules; 2021 Jul; 11(8):. PubMed ID: 34439788
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The simultaneous perception of self- and non-self-danger signals potentiates plant innate immunity responses.
    Pastor V; Cervero R; Gamir J
    Planta; 2022 Jun; 256(1):10. PubMed ID: 35697869
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of pattern-triggered immunity and growth by phytocytokines.
    Rzemieniewski J; Stegmann M
    Curr Opin Plant Biol; 2022 Aug; 68():102230. PubMed ID: 35588597
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of Plant Immunity by Nuclear Membrane-Associated Mechanisms.
    Fang Y; Gu Y
    Front Immunol; 2021; 12():771065. PubMed ID: 34938291
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nonself perception in plant innate immunity.
    Dubery IA; Sanabria NM; Huang JC
    Adv Exp Med Biol; 2012; 738():79-107. PubMed ID: 22399375
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integration of danger peptide signals with herbivore-associated molecular pattern signaling amplifies anti-herbivore defense responses in rice.
    Shinya T; Yasuda S; Hyodo K; Tani R; Hojo Y; Fujiwara Y; Hiruma K; Ishizaki T; Fujita Y; Saijo Y; Galis I
    Plant J; 2018 May; 94(4):626-637. PubMed ID: 29513388
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nitric oxide as a mediator for defense responses.
    Bellin D; Asai S; Delledonne M; Yoshioka H
    Mol Plant Microbe Interact; 2013 Mar; 26(3):271-7. PubMed ID: 23151172
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Overexpression of OsPUB41, a Rice E3 ubiquitin ligase induced by cell wall degrading enzymes, enhances immune responses in Rice and Arabidopsis.
    Kachewar NR; Gupta V; Ranjan A; Patel HK; Sonti RV
    BMC Plant Biol; 2019 Nov; 19(1):530. PubMed ID: 31783788
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The front line of defence: a meta-analysis of apoplastic proteases in plant immunity.
    Godson A; van der Hoorn RAL
    J Exp Bot; 2021 Apr; 72(9):3381-3394. PubMed ID: 33462613
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Post-translational regulation of plant immunity.
    Withers J; Dong X
    Curr Opin Plant Biol; 2017 Aug; 38():124-132. PubMed ID: 28538164
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extracellular proteolytic cascade in tomato activates immune protease Rcr3.
    Paulus JK; Kourelis J; Ramasubramanian S; Homma F; Godson A; Hörger AC; Hong TN; Krahn D; Ossorio Carballo L; Wang S; Win J; Smoker M; Kamoun S; Dong S; van der Hoorn RAL
    Proc Natl Acad Sci U S A; 2020 Jul; 117(29):17409-17417. PubMed ID: 32616567
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ROS and RNS production, subcellular localization, and signaling triggered by immunogenic danger signals.
    Giulietti S; Bigini V; Savatin DV
    J Exp Bot; 2024 Aug; 75(15):4512-4534. PubMed ID: 37950493
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Post-translational modifications in regulation of pathogen surveillance and signaling in plants: The inside- (and perturbations from) outside story.
    Bhattacharjee S; Noor JJ; Gohain B; Gulabani H; Dnyaneshwar IK; Singla A
    IUBMB Life; 2015 Jul; 67(7):524-32. PubMed ID: 26177826
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Apoplastic Proteases: Powerful Weapons against Pathogen Infection in Plants.
    Wang Y; Wang Y; Wang Y
    Plant Commun; 2020 Jul; 1(4):100085. PubMed ID: 33367249
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Post-translational modifications in priming the plant immune system: ripe for exploitation?
    de Vega D; Newton AC; Sadanandom A
    FEBS Lett; 2018 Jun; 592(12):1929-1936. PubMed ID: 29710412
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phytocytokines function as immunological modulators of plant immunity.
    Hou S; Liu D; He P
    Stress Biol; 2021; 1(1):8. PubMed ID: 34806087
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Uncovering plant-pathogen crosstalk through apoplastic proteomic studies.
    Delaunois B; Jeandet P; Clément C; Baillieul F; Dorey S; Cordelier S
    Front Plant Sci; 2014; 5():249. PubMed ID: 24917874
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The apoplast as battleground for plant-microbe interactions.
    Du Y; Stegmann M; Misas Villamil JC
    New Phytol; 2016 Jan; 209(1):34-8. PubMed ID: 26625346
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.