These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38689514)

  • 1. High Spatiotemporal Resolution Radial Encoding Single-Vessel fMRI.
    Jiang Y; Pais-Roldán P; Pohmann R; Yu X
    Adv Sci (Weinh); 2024 Jul; 11(26):e2309218. PubMed ID: 38689514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High spatiotemporal vessel-specific hemodynamic mapping with multi-echo single-vessel fMRI.
    He Y; Wang M; Yu X
    J Cereb Blood Flow Metab; 2020 Oct; 40(10):2098-2114. PubMed ID: 31696765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensory and optogenetically driven single-vessel fMRI.
    Yu X; He Y; Wang M; Merkle H; Dodd SJ; Silva AC; Koretsky AP
    Nat Methods; 2016 Apr; 13(4):337-40. PubMed ID: 26855362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of single-vessel cerebral blood velocity by phase contrast fMRI.
    Chen X; Jiang Y; Choi S; Pohmann R; Scheffler K; Kleinfeld D; Yu X
    PLoS Biol; 2021 Sep; 19(9):e3000923. PubMed ID: 34499636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct imaging of macrovascular and microvascular contributions to BOLD fMRI in layers IV-V of the rat whisker-barrel cortex.
    Yu X; Glen D; Wang S; Dodd S; Hirano Y; Saad Z; Reynolds R; Silva AC; Koretsky AP
    Neuroimage; 2012 Jan; 59(2):1451-60. PubMed ID: 21851857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BOLD fMRI and somatosensory evoked potentials are well correlated over a broad range of frequency content of somatosensory stimulation of the rat forepaw.
    Goloshevsky AG; Silva AC; Dodd SJ; Koretsky AP
    Brain Res; 2008 Feb; 1195():67-76. PubMed ID: 18206862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-Slow Single-Vessel BOLD and CBV-Based fMRI Spatiotemporal Dynamics and Their Correlation with Neuronal Intracellular Calcium Signals.
    He Y; Wang M; Chen X; Pohmann R; Polimeni JR; Scheffler K; Rosen BR; Kleinfeld D; Yu X
    Neuron; 2018 Feb; 97(4):925-939.e5. PubMed ID: 29398359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating the spatiotemporal characteristics of the deoxyhemoglobin-related and deoxyhemoglobin-unrelated functional hemodynamic response across cortical layers in awake marmosets.
    Yen CC; Papoti D; Silva AC
    Neuroimage; 2018 Jan; 164():121-130. PubMed ID: 28274833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional MRI of calcium-dependent synaptic activity: cross correlation with CBF and BOLD measurements.
    Duong TQ; Silva AC; Lee SP; Kim SG
    Magn Reson Med; 2000 Mar; 43(3):383-92. PubMed ID: 10725881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is optical imaging spectroscopy a viable measurement technique for the investigation of the negative BOLD phenomenon? A concurrent optical imaging spectroscopy and fMRI study at high field (7 T).
    Kennerley AJ; Mayhew JE; Boorman L; Zheng Y; Berwick J
    Neuroimage; 2012 May; 61(1):10-20. PubMed ID: 22440642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Columnar specificity of microvascular oxygenation and volume responses: implications for functional brain mapping.
    Sheth SA; Nemoto M; Guiou M; Walker M; Pouratian N; Hageman N; Toga AW
    J Neurosci; 2004 Jan; 24(3):634-41. PubMed ID: 14736849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural origin of spontaneous hemodynamic fluctuations in rats under burst-suppression anesthesia condition.
    Liu X; Zhu XH; Zhang Y; Chen W
    Cereb Cortex; 2011 Feb; 21(2):374-84. PubMed ID: 20530220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting the fMRI Signal Fluctuation with Recurrent Neural Networks Trained on Vascular Network Dynamics.
    Sobczak F; He Y; Sejnowski TJ; Yu X
    Cereb Cortex; 2021 Jan; 31(2):826-844. PubMed ID: 32940658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between neural, vascular, and BOLD signals in isoflurane-anesthetized rat somatosensory cortex.
    Masamoto K; Kim T; Fukuda M; Wang P; Kim SG
    Cereb Cortex; 2007 Apr; 17(4):942-50. PubMed ID: 16731882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laminar fMRI: What can the time domain tell us?
    Petridou N; Siero JCW
    Neuroimage; 2019 Aug; 197():761-771. PubMed ID: 28736308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laminar specificity of functional MRI onset times during somatosensory stimulation in rat.
    Silva AC; Koretsky AP
    Proc Natl Acad Sci U S A; 2002 Nov; 99(23):15182-7. PubMed ID: 12407177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffusion-weighted spin-echo fMRI at 9.4 T: microvascular/tissue contribution to BOLD signal changes.
    Lee SP; Silva AC; Ugurbil K; Kim SG
    Magn Reson Med; 1999 Nov; 42(5):919-28. PubMed ID: 10542351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatiotemporal characteristics and vascular sources of neural-specific and -nonspecific fMRI signals at submillimeter columnar resolution.
    Moon CH; Fukuda M; Kim SG
    Neuroimage; 2013 Jan; 64():91-103. PubMed ID: 22960251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitivity and specificity considerations for fMRI encoding, decoding, and mapping of auditory cortex at ultra-high field.
    Moerel M; De Martino F; Kemper VG; Schmitter S; Vu AT; Uğurbil K; Formisano E; Yacoub E
    Neuroimage; 2018 Jan; 164():18-31. PubMed ID: 28373123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals.
    Kim SG; Ogawa S
    J Cereb Blood Flow Metab; 2012 Jul; 32(7):1188-206. PubMed ID: 22395207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.