BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38689515)

  • 1. Thermoresponsive Core-cross-linked Nanoparticles from HA-
    Levêque M; Lecommandoux S; Garanger E
    Biomacromolecules; 2024 May; 25(5):3011-3017. PubMed ID: 38689515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Assembly of Stimuli-Responsive Biohybrid Synthetic- b-Recombinant Block Copolypeptides.
    Le Fer G; Wirotius AL; Brûlet A; Garanger E; Lecommandoux S
    Biomacromolecules; 2019 Jan; 20(1):254-272. PubMed ID: 30458105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and cellular internalization of genetically engineered polypeptide nanoparticles displaying adenovirus knob domain.
    Sun G; Hsueh PY; Janib SM; Hamm-Alvarez S; MacKay JA
    J Control Release; 2011 Oct; 155(2):218-26. PubMed ID: 21699930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ cross-linking of elastin-like polypeptide block copolymers for tissue repair.
    Lim DW; Nettles DL; Setton LA; Chilkoti A
    Biomacromolecules; 2008 Jan; 9(1):222-30. PubMed ID: 18163573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Donor-Acceptor Core-Shell Nanoparticles and Their Application in Non-Volatile Transistor Memory Devices.
    Lo CT; Watanabe Y; Murakami D; Shih CC; Nakabayashi K; Mori H; Chen WC
    Macromol Rapid Commun; 2019 Jun; 40(12):e1900115. PubMed ID: 31021501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Double hydrophilic block copolymer monolayer protected hybrid gold nanoparticles and their shell cross-linking.
    Luo S; Xu J; Zhang Y; Liu S; Wu C
    J Phys Chem B; 2005 Dec; 109(47):22159-66. PubMed ID: 16853883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-Assembly or Coassembly of Multiresponsive Histidine-Containing Elastin-Like Polypeptide Block Copolymers.
    Abdelghani M; Shao J; Le DHT; Wu H; van Hest JCM
    Macromol Biosci; 2021 Jun; 21(6):e2100081. PubMed ID: 33942499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fine tuning the disassembly time of thermoresponsive polymer nanoparticles.
    Tran NT; Jia Z; Truong NP; Cooper MA; Monteiro MJ
    Biomacromolecules; 2013 Oct; 14(10):3463-71. PubMed ID: 24032408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of shell cross-linked nano-objects from hybrid-peptide block copolymers.
    Rodríguez-Hernández J; Babin J; Zappone B; Lecommandoux S
    Biomacromolecules; 2005; 6(4):2213-20. PubMed ID: 16004465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bio-inspired synthesis of hybrid silica nanoparticles templated from elastin-like polypeptide micelles.
    Han W; MacEwan SR; Chilkoti A; López GP
    Nanoscale; 2015 Jul; 7(28):12038-44. PubMed ID: 26114664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of Polysaccharide-
    Xiao Y; Chinoy ZS; Pecastaings G; Bathany K; Garanger E; Lecommandoux S
    Biomacromolecules; 2020 Jan; 21(1):114-125. PubMed ID: 31549819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aqueous synthesis and self-assembly of bioactive and thermo-responsive HA-
    Levêque M; Xiao Y; Durand L; Massé L; Garanger E; Lecommandoux S
    Biomater Sci; 2022 Nov; 10(22):6365-6376. PubMed ID: 36168976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-Assembly Behavior of Elastin-like Polypeptide Diblock Copolymers Containing a Charged Moiety.
    Choi JW; Choi SH; Won JI
    Biomacromolecules; 2021 Jun; 22(6):2604-2613. PubMed ID: 34038105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembly/disassembly hysteresis of nanoparticles composed of marginally soluble, short elastin-like polypeptides.
    Bahniuk MS; Alshememry AK; Elgersma SV; Unsworth LD
    J Nanobiotechnology; 2018 Feb; 16(1):15. PubMed ID: 29454362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature triggered self-assembly of polypeptides into multivalent spherical micelles.
    Dreher MR; Simnick AJ; Fischer K; Smith RJ; Patel A; Schmidt M; Chilkoti A
    J Am Chem Soc; 2008 Jan; 130(2):687-94. PubMed ID: 18085778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elastin-like polypeptide-based micelles as a promising platform in nanomedicine.
    van Strien J; Escalona-Rayo O; Jiskoot W; Slütter B; Kros A
    J Control Release; 2023 Jan; 353():713-726. PubMed ID: 36526018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A quantitative recipe for engineering protein polymer nanoparticles.
    Janib SM; Pastuszka M; Aluri S; Folchman-Wagner Z; Hsueh PY; Shi P; Yi-An ; Cui H; Mackay JA
    Polym Chem; 2014 Jan; 5(5):1614-1625. PubMed ID: 24511327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and characterization of shell cross-linked micelles with hydroxy-functional coronas: a pragmatic alternative to dendrimers?
    Pilon LN; Armes SP; Findlay P; Rannard SP
    Langmuir; 2005 Apr; 21(9):3808-13. PubMed ID: 15835941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and applications of shell cross-linked thermoresponsive hybrid micelles based on poly(N-isopropylacrylamide-co-3-(trimethoxysilyl)propyl methacrylate)-b-poly(methyl methacrylate).
    Wei H; Cheng C; Chang C; Chen WQ; Cheng SX; Zhang XZ; Zhuo RX
    Langmuir; 2008 May; 24(9):4564-70. PubMed ID: 18348579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unexpected multivalent display of proteins by temperature triggered self-assembly of elastin-like polypeptide block copolymers.
    Hassouneh W; Fischer K; MacEwan SR; Branscheid R; Fu CL; Liu R; Schmidt M; Chilkoti A
    Biomacromolecules; 2012 May; 13(5):1598-605. PubMed ID: 22515311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.