These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
265 related articles for article (PubMed ID: 38690027)
1. Preoperative prediction of perineural invasion of rectal cancer based on a magnetic resonance imaging radiomics model: A dual-center study. Liu Y; Sun BJ; Zhang C; Li B; Yu XX; Du Y World J Gastroenterol; 2024 Apr; 30(16):2233-2248. PubMed ID: 38690027 [TBL] [Abstract][Full Text] [Related]
2. Preoperative Prediction of Perineural Invasion Status of Rectal Cancer Based on Radiomics Nomogram of Multiparametric Magnetic Resonance Imaging. Zhang Y; Peng J; Liu J; Ma Y; Shu Z Front Oncol; 2022; 12():828904. PubMed ID: 35480114 [TBL] [Abstract][Full Text] [Related]
3. A combinatorial MRI sequence-based radiomics model for preoperative prediction of microsatellite instability status in rectal cancer. Xing X; Li D; Peng J; Shu Z; Zhang Y; Song Q Sci Rep; 2024 May; 14(1):11760. PubMed ID: 38783014 [TBL] [Abstract][Full Text] [Related]
4. Pretreatment MR-based radiomics nomogram as potential imaging biomarker for individualized assessment of perineural invasion status in rectal cancer. Chen J; Chen Y; Zheng D; Pang P; Zhang H; Zheng X; Liao J Abdom Radiol (NY); 2021 Mar; 46(3):847-857. PubMed ID: 32870349 [TBL] [Abstract][Full Text] [Related]
5. Radiomics for predicting perineural invasion status in rectal cancer. Li M; Jin YM; Zhang YC; Zhao YL; Huang CC; Liu SM; Song B World J Gastroenterol; 2021 Sep; 27(33):5610-5621. PubMed ID: 34588755 [TBL] [Abstract][Full Text] [Related]
6. Development and external validation of a multiparametric MRI-based radiomics model for preoperative prediction of microsatellite instability status in rectal cancer: a retrospective multicenter study. Li Z; Zhang J; Zhong Q; Feng Z; Shi Y; Xu L; Zhang R; Yu F; Lv B; Yang T; Huang C; Cui F; Chen F Eur Radiol; 2023 Mar; 33(3):1835-1843. PubMed ID: 36282309 [TBL] [Abstract][Full Text] [Related]
7. Biparametric magnetic resonance imaging-based radiomics features for prediction of lymphovascular invasion in rectal cancer. Tong P; Sun D; Chen G; Ni J; Li Y BMC Cancer; 2023 Jan; 23(1):61. PubMed ID: 36650498 [TBL] [Abstract][Full Text] [Related]
8. High resolution MRI-based radiomic nomogram in predicting perineural invasion in rectal cancer. Yang YS; Qiu YJ; Zheng GH; Gong HP; Ge YQ; Zhang YF; Feng F; Wang YT Cancer Imaging; 2021 May; 21(1):40. PubMed ID: 34039436 [TBL] [Abstract][Full Text] [Related]
9. Preoperative Noninvasive Evaluation of Tumor Budding in Rectal Cancer Using Multiparameter MRI Radiomics. Peng L; Wang D; Zhuang Z; Chen X; Xue J; Zhu H; Zhang L Acad Radiol; 2024 Jun; 31(6):2334-2345. PubMed ID: 38135624 [TBL] [Abstract][Full Text] [Related]
10. Development and validation of a radiomics model based on T2WI images for preoperative prediction of microsatellite instability status in rectal cancer: Study Protocol Clinical Trial (SPIRIT Compliant). Huang Z; Zhang W; He D; Cui X; Tian S; Yin H; Song B Medicine (Baltimore); 2020 Mar; 99(10):e19428. PubMed ID: 32150094 [TBL] [Abstract][Full Text] [Related]
11. Preoperative detection of lymphovascular invasion in rectal cancer using intravoxel incoherent motion imaging based on radiomics. Wong C; Liu T; Zhang C; Li M; Zhang H; Wang Q; Fu Y Med Phys; 2024 Jan; 51(1):179-191. PubMed ID: 37929807 [TBL] [Abstract][Full Text] [Related]
12. Development of a joint prediction model based on both the radiomics and clinical factors for preoperative prediction of circumferential resection margin in middle-low rectal cancer using T2WI images. Ju Y; Zheng L; Qi W; Tian G; Lu Y Med Phys; 2024 Apr; 51(4):2563-2577. PubMed ID: 37987563 [TBL] [Abstract][Full Text] [Related]
13. Prediction of lymphovascular invasion in invasive breast cancer based on clinical-MRI radiomics features. Zhang C; Zhou P; Li R; Li Z; Ouyang A BMC Med Imaging; 2024 Oct; 24(1):277. PubMed ID: 39415127 [TBL] [Abstract][Full Text] [Related]
14. Radiomics based on T2-weighted and diffusion-weighted MR imaging for preoperative prediction of tumor deposits in rectal cancer. Sun Z; Xia F; Lv W; Li J; Zou Y; Wu J Am J Surg; 2024 Jun; 232():59-67. PubMed ID: 38272767 [TBL] [Abstract][Full Text] [Related]
15. Preoperative prediction of perineural invasion with multi-modality radiomics in rectal cancer. Guo Y; Wang Q; Guo Y; Zhang Y; Fu Y; Zhang H Sci Rep; 2021 May; 11(1):9429. PubMed ID: 33941817 [TBL] [Abstract][Full Text] [Related]
16. A clinical-radiomics model incorporating T2-weighted and diffusion-weighted magnetic resonance images predicts the existence of lymphovascular invasion / perineural invasion in patients with colorectal cancer. Zhang K; Ren Y; Xu S; Lu W; Xie S; Qu J; Wang X; Shen B; Pang P; Cai X; Sun J Med Phys; 2021 Sep; 48(9):4872-4882. PubMed ID: 34042185 [TBL] [Abstract][Full Text] [Related]
17. Preoperative prediction of histopathological grading in patients with chondrosarcoma using MRI-based radiomics with semantic features. Li X; Zhang J; Leng Y; Liu J; Li L; Wan T; Dong W; Fan B; Gong L BMC Med Imaging; 2024 Jul; 24(1):171. PubMed ID: 38992609 [TBL] [Abstract][Full Text] [Related]
18. Radiomics analysis of multiparametric MRI for prediction of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Cui Y; Yang X; Shi Z; Yang Z; Du X; Zhao Z; Cheng X Eur Radiol; 2019 Mar; 29(3):1211-1220. PubMed ID: 30128616 [TBL] [Abstract][Full Text] [Related]
19. Multi-modal radiomics model to predict treatment response to neoadjuvant chemotherapy for locally advanced rectal cancer. Li ZY; Wang XD; Li M; Liu XJ; Ye Z; Song B; Yuan F; Yuan Y; Xia CC; Zhang X; Li Q World J Gastroenterol; 2020 May; 26(19):2388-2402. PubMed ID: 32476800 [TBL] [Abstract][Full Text] [Related]
20. Deep-learning-based 3D super-resolution MRI radiomics model: superior predictive performance in preoperative T-staging of rectal cancer. Hou M; Zhou L; Sun J Eur Radiol; 2023 Jan; 33(1):1-10. PubMed ID: 35726100 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]