These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 38690172)

  • 1. Bone-nerve crosstalk: a new state for neuralizing bone tissue engineering-A mini review.
    Damiati LA; El Soury M
    Front Med (Lausanne); 2024; 11():1386683. PubMed ID: 38690172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuro-bone tissue engineering: emerging mechanisms, potential strategies, and current challenges.
    Sun W; Ye B; Chen S; Zeng L; Lu H; Wan Y; Gao Q; Chen K; Qu Y; Wu B; Lv X; Guo X
    Bone Res; 2023 Dec; 11(1):65. PubMed ID: 38123549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuro-bone tissue engineering: Multiple potential translational strategies between nerve and bone.
    Zhang Z; Hao Z; Xian C; Fang Y; Cheng B; Wu J; Xia J
    Acta Biomater; 2022 Nov; 153():1-12. PubMed ID: 36116724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nerves within bone and their application in tissue engineering of bone regeneration.
    Liu S; Liu S; Li S; Liang B; Han X; Liang Y; Wei X
    Front Neurol; 2022; 13():1085560. PubMed ID: 36818724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hallmarks of peripheral nerve function in bone regeneration.
    Tao R; Mi B; Hu Y; Lin S; Xiong Y; Lu X; Panayi AC; Li G; Liu G
    Bone Res; 2023 Jan; 11(1):6. PubMed ID: 36599828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic effects of dual-presenting VEGF- and BDNF-mimetic peptide epitopes from self-assembling peptide hydrogels on peripheral nerve regeneration.
    Lu J; Yan X; Sun X; Shen X; Yin H; Wang C; Liu Y; Lu C; Fu H; Yang S; Wang Y; Sun X; Zhao L; Lu S; Mikos AG; Peng J; Wang X
    Nanoscale; 2019 Nov; 11(42):19943-19958. PubMed ID: 31602446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Skin-derived precursors as a source of progenitors for cutaneous nerve regeneration.
    Chen Z; Pradhan S; Liu C; Le LQ
    Stem Cells; 2012 Oct; 30(10):2261-70. PubMed ID: 22851518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regeneration of adult rat sensory and motor neuron axons through chimeric peroneal nerve grafts containing donor Schwann cells engineered to express different neurotrophic factors.
    Godinho MJ; Staal JL; Krishnan VS; Hodgetts SI; Pollett MA; Goodman DP; Teh L; Verhaagen J; Plant GW; Harvey AR
    Exp Neurol; 2020 Aug; 330():113355. PubMed ID: 32422148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative morphological, electrophysiological and functional analysis of axon regeneration through peripheral nerve autografts genetically modified to overexpress BDNF, CNTF, GDNF, NGF, NT3 or VEGF.
    Hoyng SA; De Winter F; Gnavi S; de Boer R; Boon LI; Korvers LM; Tannemaat MR; Malessy MJ; Verhaagen J
    Exp Neurol; 2014 Nov; 261():578-93. PubMed ID: 25128265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Biomaterials engineering strategies for spinal cord regeneration: state of the art].
    Lis A; Szarek D; Laska J
    Polim Med; 2013; 43(2):59-80. PubMed ID: 24044287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of cell-cell interactions for neural tissue engineering: Potential therapeutic applications of cell adhesion molecules in nerve regeneration.
    Chooi WH; Chew SY
    Biomaterials; 2019 Mar; 197():327-344. PubMed ID: 30690420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stem Cells and Tissue Engineering-Based Therapeutic Interventions: Promising Strategies to Improve Peripheral Nerve Regeneration.
    de Assis ACC; Reis ALS; Nunes LV; Ferreira LFR; Bilal M; Iqbal HMN; Soriano RN
    Cell Mol Neurobiol; 2023 Mar; 43(2):433-454. PubMed ID: 35107689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Research progress of Schwann cells regulating bone regeneration].
    Wang X; Zhang R; Yu Y; Xu J; Kang Q
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2022 Feb; 36(2):236-241. PubMed ID: 35172412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuronal regulation of bone and tendon injury repair: a focused review.
    Xu M; Zhu M; Qin Q; Xing X; Archer M; Ramesh S; Cherief M; Li Z; Levi B; Clemens TL; James AW
    J Bone Miner Res; 2024 Jun; ():. PubMed ID: 38836494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mesenchymal Precursor Cells in Adult Nerves Contribute to Mammalian Tissue Repair and Regeneration.
    Carr MJ; Toma JS; Johnston APW; Steadman PE; Yuzwa SA; Mahmud N; Frankland PW; Kaplan DR; Miller FD
    Cell Stem Cell; 2019 Feb; 24(2):240-256.e9. PubMed ID: 30503141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Migrating Schwann cells direct axon regeneration within the peripheral nerve bridge.
    Min Q; Parkinson DB; Dun XP
    Glia; 2021 Feb; 69(2):235-254. PubMed ID: 32697392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth factors: Bioactive macromolecular drugs for peripheral nerve injury treatment - Molecular mechanisms and delivery platforms.
    Wan T; Zhang FS; Qin MY; Jiang HR; Zhang M; Qu Y; Wang YL; Zhang PX
    Biomed Pharmacother; 2024 Jan; 170():116024. PubMed ID: 38113623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical microenvironment in peripheral nerve regeneration: from pathophysiological understanding to tissue engineering development.
    Kong L; Gao X; Qian Y; Sun W; You Z; Fan C
    Theranostics; 2022; 12(11):4993-5014. PubMed ID: 35836812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembling peptide hydrogels functionalized with LN- and BDNF- mimicking epitopes synergistically enhance peripheral nerve regeneration.
    Yang S; Wang C; Zhu J; Lu C; Li H; Chen F; Lu J; Zhang Z; Yan X; Zhao H; Sun X; Zhao L; Liang J; Wang Y; Peng J; Wang X
    Theranostics; 2020; 10(18):8227-8249. PubMed ID: 32724468
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 15.