These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 38690719)

  • 21. Epigenetic Plasticity Drives Adipogenic and Osteogenic Differentiation of Marrow-derived Mesenchymal Stem Cells.
    Meyer MB; Benkusky NA; Sen B; Rubin J; Pike JW
    J Biol Chem; 2016 Aug; 291(34):17829-47. PubMed ID: 27402842
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bone Marrow Stromal Stem Cell Fate Decision: A Potential Mechanism For Bone Marrow Adipose Increase with Aging-related Osteoporosis.
    Tian L; Lu L; Meng Y
    Curr Mol Med; 2023; 23(10):1046-1057. PubMed ID: 36284390
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Epigenetics of Aging and Aging-Associated Diseases.
    Saul D; Kosinsky RL
    Int J Mol Sci; 2021 Jan; 22(1):. PubMed ID: 33401659
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Long non-coding RNAs in osteoporosis: from mechanisms of action to therapeutic potential.
    Hou J; Liu D; Zhao J; Qin S; Chen S; Zhou Z
    Hum Cell; 2023 May; 36(3):950-962. PubMed ID: 36881335
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Epigenetic modifications of histones during osteoblast differentiation.
    Adithya SP; Balagangadharan K; Selvamurugan N
    Biochim Biophys Acta Gene Regul Mech; 2022 Jan; 1865(1):194780. PubMed ID: 34968769
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Research progress on the role of lncRNA-miRNA networks in regulating adipogenic and osteogenic differentiation of bone marrow mesenchymal stem cells in osteoporosis.
    An F; Wang X; Wang C; Liu Y; Sun B; Zhang J; Gao P; Yan C
    Front Endocrinol (Lausanne); 2023; 14():1210627. PubMed ID: 37645421
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tissue source determines the differentiation potentials of mesenchymal stem cells: a comparative study of human mesenchymal stem cells from bone marrow and adipose tissue.
    Xu L; Liu Y; Sun Y; Wang B; Xiong Y; Lin W; Wei Q; Wang H; He W; Wang B; Li G
    Stem Cell Res Ther; 2017 Dec; 8(1):275. PubMed ID: 29208029
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification and characterization of microRNAs by high through-put sequencing in mesenchymal stem cells and bone tissue from mice of age-related osteoporosis.
    He X; Zhang W; Liao L; Fu X; Yu Q; Jin Y
    PLoS One; 2013; 8(8):e71895. PubMed ID: 23991002
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Alkbh1-mediated DNA N6-methyladenine modification regulates bone marrow mesenchymal stem cell fate during skeletal aging.
    Cai GP; Liu YL; Luo LP; Xiao Y; Jiang TJ; Yuan J; Wang M
    Cell Prolif; 2022 Feb; 55(2):e13178. PubMed ID: 35018683
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Allyl sulfide promotes osteoblast differentiation and bone density via reducing mitochondrial DNA release mediated Kdm6b/H3K27me3 epigenetic mechanism.
    Behera J; Ison J; Rai H; Tyagi N
    Biochem Biophys Res Commun; 2021 Mar; 543():87-94. PubMed ID: 33556823
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Low-magnitude vibration induces osteogenic differentiation of bone marrow mesenchymal stem cells via miR-378a-3p/Grb2 pathway to promote bone formation in a rat model of age-related bone loss.
    Yu X; Zeng Y; Bao M; Wen J; Zhu G; Cao C; He X; Li L
    FASEB J; 2020 Sep; 34(9):11754-11771. PubMed ID: 32652777
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of miRNAs, lncRNAs and circRNAs on osteoporosis as regulatory factors of bone homeostasis (Review).
    Li Z; Xue H; Tan G; Xu Z
    Mol Med Rep; 2021 Nov; 24(5):. PubMed ID: 34505632
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The transcriptional profile of mesenchymal stem cell populations in primary osteoporosis is distinct and shows overexpression of osteogenic inhibitors.
    Benisch P; Schilling T; Klein-Hitpass L; Frey SP; Seefried L; Raaijmakers N; Krug M; Regensburger M; Zeck S; Schinke T; Amling M; Ebert R; Jakob F
    PLoS One; 2012; 7(9):e45142. PubMed ID: 23028809
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Epigenetic Control of Skeletal Development by the Histone Methyltransferase Ezh2.
    Dudakovic A; Camilleri ET; Xu F; Riester SM; McGee-Lawrence ME; Bradley EW; Paradise CR; Lewallen EA; Thaler R; Deyle DR; Larson AN; Lewallen DG; Dietz AB; Stein GS; Montecino MA; Westendorf JJ; van Wijnen AJ
    J Biol Chem; 2015 Nov; 290(46):27604-17. PubMed ID: 26424790
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Epigenetic Regulation of Mesenchymal Stem Cell Homeostasis.
    Sui BD; Zheng CX; Li M; Jin Y; Hu CH
    Trends Cell Biol; 2020 Feb; 30(2):97-116. PubMed ID: 31866188
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Foxf1 knockdown promotes BMSC osteogenesis in part by activating the Wnt/β-catenin signalling pathway and prevents ovariectomy-induced bone loss.
    Shen G; Ren H; Shang Q; Zhao W; Zhang Z; Yu X; Tang K; Tang J; Yang Z; Liang D; Jiang X
    EBioMedicine; 2020 Feb; 52():102626. PubMed ID: 31981979
    [TBL] [Abstract][Full Text] [Related]  

  • 37. HDAC6 inactivates Runx2 promoter to block osteogenesis of bone marrow stromal cells in age-related bone loss of mice.
    Ma C; Gao J; Liang J; Dai W; Wang Z; Xia M; Chen T; Huang S; Na J; Xu L; Feng S; Dai K; Liu G
    Stem Cell Res Ther; 2021 Aug; 12(1):484. PubMed ID: 34454588
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Decoding the Regulatory Landscape of Ageing in Musculoskeletal Engineered Tissues Using Genome-Wide DNA Methylation and RNASeq.
    Peffers MJ; Goljanek-Whysall K; Collins J; Fang Y; Rushton M; Loughlin J; Proctor C; Clegg PD
    PLoS One; 2016; 11(8):e0160517. PubMed ID: 27533049
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Epigenetic Regulation of Skeletal Tissue Integrity and Osteoporosis Development.
    Chen YS; Lian WS; Kuo CW; Ke HJ; Wang SY; Kuo PC; Jahr H; Wang FS
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32664681
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemerin located in bone marrow promotes osteogenic differentiation and bone formation via Akt/Gsk3β/β-catenin axis in mice.
    Li J; Zhang T; Huang C; Xu M; Xie W; Pei Q; Xie X; Wang B; Li X
    J Cell Physiol; 2021 Aug; 236(8):6042-6054. PubMed ID: 33492671
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.