BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38690765)

  • 1. Polymer Coatings Affect Transport and Remobilization of Colloidal Activated Carbon in Saturated Sand Columns: Implications for In Situ Groundwater Remediation.
    Guan X; Kong L; Liu C; Fan D; Anger B; Johnson WP; Lowry GV; Li G; Danko A; Liu X
    Environ Sci Technol; 2024 May; 58(19):8531-8541. PubMed ID: 38690765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Colloidal activated carbon for in-situ groundwater remediation--Transport characteristics and adsorption of organic compounds in water-saturated sediment columns.
    Georgi A; Schierz A; Mackenzie K; Kopinke FD
    J Contam Hydrol; 2015 Aug; 179():76-88. PubMed ID: 26070009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors Affecting the Adsorption of Per- and Polyfluoroalkyl Substances (PFAS) by Colloidal Activated Carbon.
    Hakimabadi SG; Taylor A; Pham AL
    Water Res; 2023 Aug; 242():120212. PubMed ID: 37336180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correction to "Polymer Coatings Affect Transport and Remobilization of Colloidal Activated Carbon in Saturated Sand Columns: Implications for In Situ Groundwater Remediation".
    Guan X; Kong L; Liu C; Fan D; Anger B; Johnson WP; Lowry GV; Li G; Danko A; Liu X
    Environ Sci Technol; 2024 Jun; 58(25):11203. PubMed ID: 38860869
    [No Abstract]   [Full Text] [Related]  

  • 5. Architecture dependent transport behavior of iron (0) entrapped biodegradable polymeric particles for groundwater remediation.
    Pandey K; Verma DK; Singh A; Saha S
    Chemosphere; 2024 Jun; 357():141892. PubMed ID: 38615952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-transport of polystyrene microplastics and kaolinite colloids in goethite-coated quartz sand: Joint effects of heteropolymerization and surface charge modification.
    Chang B; He B; Cao G; Zhou Z; Liu X; Yang Y; Xu C; Hu F; Lv J; Du W
    Sci Total Environ; 2023 Aug; 884():163832. PubMed ID: 37121313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced transport potential of a palladium-doped zero valent iron nanoparticle in a water saturated loamy sand.
    Basnet M; Di Tommaso C; Ghoshal S; Tufenkji N
    Water Res; 2015 Jan; 68():354-63. PubMed ID: 25462742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport and long-term release behavior of polymer-coated silver nanoparticles in saturated quartz sand: The impacts of input concentration, grain size and flow rate.
    Hou J; Zhang M; Wang P; Wang C; Miao L; Xu Y; You G; Lv B; Yang Y; Liu Z
    Water Res; 2017 Dec; 127():86-95. PubMed ID: 29035769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A field investigation on transport of carbon-supported nanoscale zero-valent iron (nZVI) in groundwater.
    Busch J; Meißner T; Potthoff A; Bleyl S; Georgi A; Mackenzie K; Trabitzsch R; Werban U; Oswald SE
    J Contam Hydrol; 2015 Oct; 181():59-68. PubMed ID: 25864966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cotransport of bismerthiazol and montmorillonite colloids in saturated porous media.
    Shen C; Wang H; Lazouskaya V; Du Y; Lu W; Wu J; Zhang H; Huang Y
    J Contam Hydrol; 2015; 177-178():18-29. PubMed ID: 25805364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nano-SiO
    Ghosh D; Das S; Gahlot VK; Pulimi M; Anand S; Chandrasekaran N; Rai PK; Mukherjee A
    J Contam Hydrol; 2022 Jun; 248():104029. PubMed ID: 35653834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergetic effect of hydrochar on the transport of anatase titanium dioxide nanoparticles in the presence of phosphate in saturated quartz sand.
    Cheng X; Xu N; Huangfu X; Zhou X; Zhang M
    Environ Sci Pollut Res Int; 2018 Oct; 25(29):28864-28874. PubMed ID: 30099712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Situ Sequestration of Perfluoroalkyl Substances Using Polymer-Stabilized Powdered Activated Carbon.
    Liu C; Hatton J; Arnold WA; Simcik MF; Pennell KD
    Environ Sci Technol; 2020 Jun; 54(11):6929-6936. PubMed ID: 32379438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbonate minerals in porous media decrease mobility of polyacrylic acid modified zero-valent iron nanoparticles used for groundwater remediation.
    Laumann S; Micić V; Lowry GV; Hofmann T
    Environ Pollut; 2013 Aug; 179():53-60. PubMed ID: 23644276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Per- and polyfluoroalkyl substance (PFAS) retention by colloidal activated carbon (CAC) using dynamic column experiments.
    Niarchos G; Ahrens L; Kleja DB; Fagerlund F
    Environ Pollut; 2022 Sep; 308():119667. PubMed ID: 35750303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-transport of graphene oxide and heavy metal ions in surface-modified porous media.
    Yin X; Jiang Y; Tan Y; Meng X; Sun H; Wang N
    Chemosphere; 2019 Mar; 218():1-13. PubMed ID: 30458243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Significant Mobility of Novel Heteroaggregates of Montmorillonite Microparticles with Nanoscale Zerovalent Irons in Saturated Porous Media.
    Shen C; Teng J; Zheng W; Liu D; Ma K
    Toxics; 2022 Jun; 10(6):. PubMed ID: 35736940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A 3-dimensional micro- and nanoparticle transport and filtration model (MNM3D) applied to the migration of carbon-based nanomaterials in porous media.
    Bianco C; Tosco T; Sethi R
    J Contam Hydrol; 2016 Oct; 193():10-20. PubMed ID: 27607520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deposition and remobilization of graphene oxide within saturated sand packs.
    Feriancikova L; Xu S
    J Hazard Mater; 2012 Oct; 235-236():194-200. PubMed ID: 22884729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental and modeling analyses for interactions between graphene oxide and quartz sand.
    Kang JK; Park JA; Yi IG; Kim SB
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Mar; 52(4):368-377. PubMed ID: 27960653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.