BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38691105)

  • 1. Strength-ductility materials by engineering a coherent interface at incoherent precipitates.
    Mao D; Xie Y; Meng X; Ma X; Zhang Z; Sun X; Wan L; Volodymyr K; Huang Y
    Mater Horiz; 2024 May; ():. PubMed ID: 38691105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning Microstructure and Mechanical Performance of a Co-Rich Transformation-Induced Plasticity High Entropy Alloy.
    Yi H; Xie R; Zhang Y; Wang L; Tan M; Li T; Wei D
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Doubled strength and ductility via maraging effect and dynamic precipitate transformation in ultrastrong medium-entropy alloy.
    Chung H; Choi WS; Jun H; Do HS; Lee BJ; Choi PP; Han HN; Ko WS; Sohn SS
    Nat Commun; 2023 Jan; 14(1):145. PubMed ID: 36627295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Achieving Excellent Strength-Ductility Balance in Single-Phase CoCrNiV Multi-Principal Element Alloy.
    Ni Z; Li Z; Shen R; Peng S; Yan H; Tian Y
    Materials (Basel); 2023 Oct; 16(19):. PubMed ID: 37834667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Annealing on Microstructure and Mechanical Properties of Metastable Powder Metallurgy CoCrFeNiMo
    Zhang C; Liu B; Liu Y; Fang Q; Guo W; Yang H
    Entropy (Basel); 2019 Apr; 21(5):. PubMed ID: 33267162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microstructural Evolution and Tensile Properties of Al
    Wang X; Zhang Z; Wang Z; Ren X
    Materials (Basel); 2022 Feb; 15(3):. PubMed ID: 35161159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscale precipitates as sustainable dislocation sources for enhanced ductility and high strength.
    Peng S; Wei Y; Gao H
    Proc Natl Acad Sci U S A; 2020 Mar; 117(10):5204-5209. PubMed ID: 32094194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strengthening Mechanism of a Single Precipitate in a Metallic Nanocube.
    Kiani MT; Wang Y; Bertin N; Cai W; Gu XW
    Nano Lett; 2019 Jan; 19(1):255-260. PubMed ID: 30525680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of Multiple Precipitates for High Strength and Ductility in Al-Cu-Mn Alloy.
    Liu L; Wang Z; Wu Q; Yang Z; Zhou K; Fan X; Li J; Wang J
    Materials (Basel); 2021 Dec; 14(23):. PubMed ID: 34885537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off.
    Li Z; Pradeep KG; Deng Y; Raabe D; Tasan CC
    Nature; 2016 Jun; 534(7606):227-30. PubMed ID: 27279217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bifunctional nanoprecipitates strengthen and ductilize a medium-entropy alloy.
    Yang Y; Chen T; Tan L; Poplawsky JD; An K; Wang Y; Samolyuk GD; Littrell K; Lupini AR; Borisevich A; George EP
    Nature; 2021 Jul; 595(7866):245-249. PubMed ID: 34234333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shear band-driven precipitate dispersion for ultrastrong ductile medium-entropy alloys.
    Jang TJ; Choi WS; Kim DW; Choi G; Jun H; Ferrari A; Körmann F; Choi PP; Sohn SS
    Nat Commun; 2021 Aug; 12(1):4703. PubMed ID: 34349105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of Microstructures and Mechanical Properties of SiC/AA2024 Nanocomposites Processed by Powder Metallurgy and T6 Heat Treatment.
    Mu D; Zhang Z; Liang J; Wang J; Zhang D
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of alloying with Cu and Mn and thermal treatments on the mechanical instability of Zn-0.05Mg alloy.
    Ardakani MS; Mostaed E; Sikora-Jasinska M; Kampe SL; Drelich JW
    Mater Sci Eng A Struct Mater; 2020 Jan; 770():. PubMed ID: 32863579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation.
    Jiang S; Wang H; Wu Y; Liu X; Chen H; Yao M; Gault B; Ponge D; Raabe D; Hirata A; Chen M; Wang Y; Lu Z
    Nature; 2017 Apr; 544(7651):460-464. PubMed ID: 28397822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of cooling conditions on grain size, secondary phase precipitates and mechanical properties of biomedical alloy specimens produced by investment casting.
    Kaiser R; Williamson K; O'Brien C; Ramirez-Garcia S; Browne DJ
    J Mech Behav Biomed Mater; 2013 Aug; 24():53-63. PubMed ID: 23683759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microstructures and Mechanical Properties of Al-Zn-Mg-Cu Alloys under Multi-Directional Severe Strain and Aging.
    Wei C; Lei Z; Du S; Chen R; Yin Y; Niu C; Xu Z
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strain hardening recovery mediated by coherent precipitates in lightweight steel.
    Kim SD; Park SJ; Jang JH; Moon J; Ha HY; Lee CH; Park H; Shin JH; Lee TH
    Sci Rep; 2021 Jul; 11(1):14468. PubMed ID: 34262073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating enhanced mechanical properties in dual-phase Fe-Ga-Tb alloys.
    Meng C; Wang H; Wu Y; Liu J; Jiang C
    Sci Rep; 2016 Oct; 6():34258. PubMed ID: 27694839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polycrystalline Superalloy Membranes Produced by Load-Free Coarsening of Incoherent γ'-Precipitates: Microstructure Evolution and Mechanical Properties.
    Voelter C; Rösler J
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33562325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.