These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38691198)

  • 1. Imaging Rovibrational Excitation of Scattered YO Molecules in Inelastic Collisions with Kr and Ne.
    Xu A; Ma Y; Yan D; Li F; Zhou T; Liu J; Wang F
    J Phys Chem A; 2024 May; 128(19):3848-3854. PubMed ID: 38691198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental testing of ab initio potential energy surfaces: Stereodynamics of NO(A
    Luxford TF; Sharples TR; McKendrick KG; Costen ML
    J Chem Phys; 2016 Nov; 145(17):174304. PubMed ID: 27825214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-sliced ion-velocity imaging study of the reaction Y + O2 → YO + O.
    Honma K; Matsumoto Y
    Phys Chem Chem Phys; 2011 May; 13(18):8236-44. PubMed ID: 21423981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stereodynamics of rotational energy transfer in NO(
    Leng JG; Sharples TR; McKendrick KG; Costen ML
    Phys Chem Chem Phys; 2022 Mar; 24(11):6525-6534. PubMed ID: 35257129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy transfer of highly vibrationally excited naphthalene: collisions with CHF3, CF4, and Kr.
    Chen Hsu H; Tsai MT; Dyakov YA; Ni CK
    J Chem Phys; 2011 Aug; 135(5):054311. PubMed ID: 21823704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum dynamics of rovibrational transitions in H2-H2 collisions: internal energy and rotational angular momentum conservation effects.
    Fonseca dos Santos S; Balakrishnan N; Lepp S; Quéméner G; Forrey RC; Hinde RJ; Stancil PC
    J Chem Phys; 2011 Jun; 134(21):214303. PubMed ID: 21663358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy transfer of highly vibrationally excited azulene. II. Photodissociation of azulene-Kr van der Waals clusters at 248 and 266 nm.
    Hsu HC; Liu CL; Lyu JJ; Ni CK
    J Chem Phys; 2006 Apr; 124(13):134303. PubMed ID: 16613451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Collisional transfer of population and orientation in NaK.
    Wolfe CM; Ashman S; Bai J; Beser B; Ahmed EH; Lyyra AM; Huennekens J
    J Chem Phys; 2011 May; 134(17):174301. PubMed ID: 21548681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy transfer of highly vibrationally excited azulene. III. Collisions between azulene and argon.
    Liu CL; Hsu HC; Lyu JJ; Ni CK
    J Chem Phys; 2006 Nov; 125(20):204309. PubMed ID: 17144702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observation of Rainbows in the Rotationally Inelastic Scattering of NO with CH
    Wang XD; Robertson PA; Cascarini FJJ; Quinn MS; McManus JW; Orr-Ewing AJ
    J Phys Chem A; 2019 Sep; 123(36):7758-7767. PubMed ID: 31442046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imaging rotational energy transfer: comparative stereodynamics in CO + N
    Sun ZF; Scheidsbach RJA; van Hemert MC; van der Avoird A; Suits AG; Parker DH
    Phys Chem Chem Phys; 2023 Jul; 25(27):17828-17839. PubMed ID: 37377093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy transfer of highly vibrationally excited azulene: collisions between azulene and krypton.
    Liu CL; Hsu HC; Lyu JJ; Ni CK
    J Chem Phys; 2006 Feb; 124(5):054302. PubMed ID: 16468864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vibrational excitation through tug-of-war inelastic collisions.
    Greaves SJ; Wrede E; Goldberg NT; Zhang J; Miller DJ; Zare RN
    Nature; 2008 Jul; 454(7200):88-91. PubMed ID: 18596807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rotationally inelastic scattering of NO(A(2)Σ(+)) + Ar: Differential cross sections and rotational angular momentum polarization.
    Sharples TR; Luxford TF; Townsend D; McKendrick KG; Costen ML
    J Chem Phys; 2015 Nov; 143(20):204301. PubMed ID: 26627953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of kinematic parameters on inelastic scattering of glyoxal.
    Duca MD
    J Chem Phys; 2004 Oct; 121(14):6750-8. PubMed ID: 15473731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlated rotational excitations in NO-CO inelastic collisions.
    Tang G; Besemer M; Onvlee J; Karman T; van der Avoird A; Groenenboom GC; van de Meerakker SYT
    J Chem Phys; 2022 Jun; 156(21):214304. PubMed ID: 35676127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inelastic scattering from glyoxal: collision kinematics rather than the interaction potential dominates rotational channel selection.
    Clegg SM; Parmenter CS
    J Chem Phys; 2006 Oct; 125(13):133110. PubMed ID: 17029436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy transfer of highly vibrationally excited phenanthrene and diphenylacetylene.
    Hsu HC; Tsai MT; Dyakov Y; Ni CK
    Phys Chem Chem Phys; 2011 May; 13(18):8313-21. PubMed ID: 21298156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy transfer of highly vibrationally excited naphthalene. I. Translational collision energy dependence.
    Liu CL; Hsu HC; Hsu YC; Ni CK
    J Chem Phys; 2007 Sep; 127(10):104311. PubMed ID: 17867751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlated energy transfer in rotationally and spin-orbit inelastic collisions of NO(X
    Gao Z; Karman T; Tang G; van der Avoird A; Groenenboom GC; van de Meerakker SYT
    Phys Chem Chem Phys; 2018 May; 20(18):12444-12453. PubMed ID: 29697730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.