These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 38691241)
1. Identification of potential key lipid metabolism-related genes involved in tubular injury in diabetic kidney disease by bioinformatics analysis. Fan Y; He J; Shi L; Zhang M; Chen Y; Xu L; Han N; Jiang Y Acta Diabetol; 2024 Aug; 61(8):1053-1068. PubMed ID: 38691241 [TBL] [Abstract][Full Text] [Related]
2. Bioinformatics prediction and experimental verification of key biomarkers for diabetic kidney disease based on transcriptome sequencing in mice. Zhao J; He K; Du H; Wei G; Wen Y; Wang J; Zhou X; Wang J PeerJ; 2022; 10():e13932. PubMed ID: 36157062 [TBL] [Abstract][Full Text] [Related]
3. Screening and Identification of Hub Genes in the Development of Early Diabetic Kidney Disease Based on Weighted Gene Co-Expression Network Analysis. Wei R; Qiao J; Cui D; Pan Q; Guo L Front Endocrinol (Lausanne); 2022; 13():883658. PubMed ID: 35721731 [TBL] [Abstract][Full Text] [Related]
4. Identification of Novel Key Molecular Signatures in the Pathogenesis of Experimental Diabetic Kidney Disease. Diao M; Wu Y; Yang J; Liu C; Xu J; Jin H; Wang J; Zhang J; Gao F; Jin C; Tian H; Xu J; Ou Q; Li Y; Xu G; Lu L Front Endocrinol (Lausanne); 2022; 13():843721. PubMed ID: 35432190 [TBL] [Abstract][Full Text] [Related]
5. Integrin subunit beta 6 is a potential diagnostic marker for acute kidney injury in patients with diabetic kidney disease: a single cell sequencing data analysis. Yao C; Li Z; Su H; Sun K; Liu Q; Zhang Y; Zhu L; Jiang F; Fan Y; Shou S; Wu H; Jin H Ren Fail; 2024 Dec; 46(2):2409348. PubMed ID: 39356055 [TBL] [Abstract][Full Text] [Related]
6. Identification of novel key genes and potential candidate small molecule drugs in diabetic kidney disease using comprehensive bioinformatics analysis. Li B; Ye S; Fan Y; Lin Y; Li S; Peng H; Diao H; Chen W Front Genet; 2022; 13():934555. PubMed ID: 36035169 [No Abstract] [Full Text] [Related]
7. Diabetic kidney disease-predisposing proinflammatory and profibrotic genes identified by weighted gene co-expression network analysis (WGCNA). Chen J; Luo SF; Yuan X; Wang M; Yu HJ; Zhang Z; Yang YY J Cell Biochem; 2022 Feb; 123(2):481-492. PubMed ID: 34908186 [TBL] [Abstract][Full Text] [Related]
8. Single-cell RNA and transcriptome sequencing profiles identify immune-associated key genes in the development of diabetic kidney disease. Zhang X; Chao P; Zhang L; Xu L; Cui X; Wang S; Wusiman M; Jiang H; Lu C Front Immunol; 2023; 14():1030198. PubMed ID: 37063851 [TBL] [Abstract][Full Text] [Related]
9. Identification and construction of lncRNA-associated ceRNA network in diabetic kidney disease. Wang Y; Tan J; Xu C; Wu H; Zhang Y; Xiong Y; Yi C Medicine (Baltimore); 2021 Jun; 100(22):e26062. PubMed ID: 34087849 [TBL] [Abstract][Full Text] [Related]
10. Identification of Lipotoxicity-Related Biomarkers in Diabetic Nephropathy Based on Bioinformatic Analysis. Nie H; Yang H; Cheng L; Yu J J Diabetes Res; 2024; 2024():5550812. PubMed ID: 38774257 [No Abstract] [Full Text] [Related]
11. [Bioinformatic analysis of immune-related transcription factors in diabetic kidney disease]. Liu L; Yang J; Ren J Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi; 2024 Jun; 40(6):488-493. PubMed ID: 38952087 [TBL] [Abstract][Full Text] [Related]
12. Novel ferroptosis gene biomarkers and immune infiltration profiles in diabetic kidney disease via bioinformatics. Huang Y; Yuan X FASEB J; 2024 Jan; 38(2):e23421. PubMed ID: 38198194 [TBL] [Abstract][Full Text] [Related]
13. Identification of mitochondria-related genes as diagnostic biomarkers for diabetic nephropathy and their correlation with immune infiltration: New insights from bioinformatics analysis. Yan Q; Du Y; Huang F; Zhang Q; Zhan M; Wu J; Yan J; Zhang P; Lin H; Han L; Huang X Int Immunopharmacol; 2024 Dec; 142(Pt A):113114. PubMed ID: 39265357 [TBL] [Abstract][Full Text] [Related]
14. Identification of Key Candidate Genes and Chemical Perturbagens in Diabetic Kidney Disease Using Integrated Bioinformatics Analysis. Gao Z; S A; Li XM; Li XL; Sui LN Front Endocrinol (Lausanne); 2021; 12():721202. PubMed ID: 34557161 [TBL] [Abstract][Full Text] [Related]
15. Integrative analysis of potential biomarkers and immune cell infiltration in Parkinson's disease. Chen X; Cao W; Zhuang Y; Chen S; Li X Brain Res Bull; 2021 Dec; 177():53-63. PubMed ID: 34536521 [TBL] [Abstract][Full Text] [Related]
16. Identification of Oxidative Stress-Related Biomarkers in Diabetic Kidney Disease. Ma X; Zhang X; Leng T; Ma J; Yuan Z; Gu Y; Hu T; Liu Q; Shen T Evid Based Complement Alternat Med; 2022; 2022():1067504. PubMed ID: 36624863 [TBL] [Abstract][Full Text] [Related]
17. Identification of key genes for diabetic kidney disease using biological informatics methods. Ma F; Sun T; Wu M; Wang W; Xu Z Mol Med Rep; 2017 Dec; 16(6):7931-7938. PubMed ID: 28990106 [TBL] [Abstract][Full Text] [Related]
18. Identification of Diagnostic Gene Markers and Immune Infiltration in Systemic Lupus. Hu H; He C Comput Math Methods Med; 2022; 2022():3386999. PubMed ID: 35558576 [TBL] [Abstract][Full Text] [Related]
19. Identification and analysis of cellular senescence-associated signatures in diabetic kidney disease by integrated bioinformatics analysis and machine learning. Luo Y; Zhang L; Zhao T Front Endocrinol (Lausanne); 2023; 14():1193228. PubMed ID: 37396184 [TBL] [Abstract][Full Text] [Related]
20. Identification of key genes and immune infiltration in osteoarthritis through analysis of zinc metabolism-related genes. You X; Ye Y; Lin S; Zhang Z; Guo H; Ye H BMC Musculoskelet Disord; 2024 Mar; 25(1):227. PubMed ID: 38509535 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]