These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 38691254)

  • 21. Extracellular Vesicle Nanoarchitectonics for Novel Drug Delivery Applications.
    Sharma S; Masud MK; Kaneti YV; Rewatkar P; Koradia A; Hossain MSA; Yamauchi Y; Popat A; Salomon C
    Small; 2021 Oct; 17(42):e2102220. PubMed ID: 34216426
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Engineered extracellular vesicles with synthetic lipids via membrane fusion to establish efficient gene delivery.
    Jhan YY; Prasca-Chamorro D; Palou Zuniga G; Moore DM; Arun Kumar S; Gaharwar AK; Bishop CJ
    Int J Pharm; 2020 Jan; 573():118802. PubMed ID: 31715354
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Uptake, functionality, and re-release of extracellular vesicle-encapsulated cargo.
    O'Brien K; Ughetto S; Mahjoum S; Nair AV; Breakefield XO
    Cell Rep; 2022 Apr; 39(2):110651. PubMed ID: 35417683
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Extracellular Vesicle Loading Via pH-Gradient Modification.
    Kronstadt SM; Jay SM; Jeyaram A
    Methods Mol Biol; 2022; 2504():231-239. PubMed ID: 35467291
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Standardization Approaches for Extracellular Vesicle Loading with Oligonucleotides and Biologics.
    Roerig J; Schulz-Siegmund M
    Small; 2023 Oct; 19(40):e2301763. PubMed ID: 37287374
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhancing the Therapeutic Potential of Extracellular Vesicles Using Peptide Technology.
    Martin Perez C; Conceição M; Raz R; Wood MJA; Roberts TC
    Methods Mol Biol; 2022; 2383():119-141. PubMed ID: 34766286
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single-particle assessment of six different drug-loading strategies for incorporating doxorubicin into small extracellular vesicles.
    Chen C; Li Y; Wang Q; Cai N; Wu L; Yan X
    Anal Bioanal Chem; 2023 Mar; 415(7):1287-1298. PubMed ID: 35945289
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Engineering Extracellular Vesicles for Cancer Therapy.
    Nedeva C; Mathivanan S
    Subcell Biochem; 2021; 97():375-392. PubMed ID: 33779924
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Current Strategies for Exosome Cargo Loading and Targeting Delivery.
    Zeng H; Guo S; Ren X; Wu Z; Liu S; Yao X
    Cells; 2023 May; 12(10):. PubMed ID: 37408250
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exploring interactions between extracellular vesicles and cells for innovative drug delivery system design.
    Kooijmans SAA; de Jong OG; Schiffelers RM
    Adv Drug Deliv Rev; 2021 Jun; 173():252-278. PubMed ID: 33798644
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Serum Derived Extracellular Vesicles Mediated Delivery of Synthetic miRNAs in Human Endothelial Cells.
    Tapparo M; Pomatto MAC; Deregibus MC; Papadimitriou E; Cavallari C; D'Antico S; Collino F; Camussi G
    Front Mol Biosci; 2021; 8():636587. PubMed ID: 33842542
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Good things come in small packages: Overcoming challenges to harness extracellular vesicles for therapeutic delivery.
    Ingato D; Lee JU; Sim SJ; Kwon YJ
    J Control Release; 2016 Nov; 241():174-185. PubMed ID: 27667180
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering of Extracellular Vesicles for Small Molecule-Regulated Cargo Loading and Cytoplasmic Delivery of Bioactive Proteins.
    Somiya M; Kuroda S
    Mol Pharm; 2022 Jul; 19(7):2495-2505. PubMed ID: 35594496
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Translating extracellular vesicle packaging into therapeutic applications.
    Ozkocak DC; Phan TK; Poon IKH
    Front Immunol; 2022; 13():946422. PubMed ID: 36045692
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Skin-targeted delivery of extracellular vesicle-encapsulated curcumin using dissolvable microneedle arrays.
    Yerneni SS; Yalcintas EP; Smith JD; Averick S; Campbell PG; Ozdoganlar OB
    Acta Biomater; 2022 Sep; 149():198-212. PubMed ID: 35809788
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The cell type dependent sorting of CD9- and CD81 to extracellular vesicles can be exploited to convey tumor sensitive cargo to target cells.
    Zuppone S; Zarovni N; Vago R
    Drug Deliv; 2023 Dec; 30(1):2162161. PubMed ID: 36579638
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Loading of Extracellular Vesicles with Hydrophobically Modified siRNAs.
    Didiot MC; Haraszti RA; Aronin N; Khvorova A
    Methods Mol Biol; 2018; 1740():199-214. PubMed ID: 29388146
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Therapeutic potential of RNA-enriched extracellular vesicles: The next generation in RNA delivery via biogenic nanoparticles.
    Muskan M; Abeysinghe P; Cecchin R; Branscome H; Morris KV; Kashanchi F
    Mol Ther; 2024 Feb; ():. PubMed ID: 38414242
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent Progress in Extracellular Vesicle-Based Carriers for Targeted Drug Delivery in Cancer Therapy.
    Tang Y; Liu X; Sun M; Xiong S; Xiao N; Li J; He X; Xie J
    Pharmaceutics; 2023 Jul; 15(7):. PubMed ID: 37514088
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cytochalasin B Treatment and Osmotic Pressure Enhance the Production of Extracellular Vesicles (EVs) with Improved Drug Loading Capacity.
    Nair A; Bu J; Rawding PA; Do SC; Li H; Hong S
    Nanomaterials (Basel); 2021 Dec; 12(1):. PubMed ID: 35009953
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.