These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 38691288)
1. A modified drag coefficient model for calculating the terminal settling velocity and horizontal diffusion distance of irregular plume particles in deep-sea mining. Liu ZL; Rao QH; Yi W; Huang W Environ Sci Pollut Res Int; 2024 May; 31(23):33848-33866. PubMed ID: 38691288 [TBL] [Abstract][Full Text] [Related]
2. Measurement and modelling of deep sea sediment plumes and implications for deep sea mining. Spearman J; Taylor J; Crossouard N; Cooper A; Turnbull M; Manning A; Lee M; Murton B Sci Rep; 2020 Mar; 10(1):5075. PubMed ID: 32193479 [TBL] [Abstract][Full Text] [Related]
3. A new model for the terminal settling velocity of microplastics. Yu Z; Yang G; Zhang W Mar Pollut Bull; 2022 Mar; 176():113449. PubMed ID: 35183949 [TBL] [Abstract][Full Text] [Related]
4. Stokes settling and particle-laden plumes: implications for deep-sea mining and volcanic eruption plumes. Mingotti N; Woods AW Philos Trans A Math Phys Eng Sci; 2020 Sep; 378(2179):20190532. PubMed ID: 32762438 [TBL] [Abstract][Full Text] [Related]
5. A settling velocity formula for irregular shaped microplastic fragments based on new shape factor: Influence of secondary motions. Ji C; Zhang J; Liu G; Zhang Q; Shen X Sci Total Environ; 2024 Oct; 955():176857. PubMed ID: 39419206 [TBL] [Abstract][Full Text] [Related]
6. A new model for settling velocity of non-spherical particles. Yang F; Zeng YH; Huai WX Environ Sci Pollut Res Int; 2021 Nov; 28(43):61636-61646. PubMed ID: 34184223 [TBL] [Abstract][Full Text] [Related]
7. Development of physical modelling tools in support of risk scenarios: A new framework focused on deep-sea mining. Lopes CL; Bastos L; Caetano M; Martins I; Santos MM; Iglesias I Sci Total Environ; 2019 Feb; 650(Pt 2):2294-2306. PubMed ID: 30292122 [TBL] [Abstract][Full Text] [Related]
8. Settling velocity of microplastic particles having regular and irregular shapes. Goral KD; Guler HG; Larsen BE; Carstensen S; Christensen ED; Kerpen NB; Schlurmann T; Fuhrman DR Environ Res; 2023 Jul; 228():115783. PubMed ID: 37028533 [TBL] [Abstract][Full Text] [Related]
9. Effect of particle volume fraction on the settling velocity of volcanic ash particles: insights from joint experimental and numerical simulations. Del Bello E; Taddeucci J; De' Michieli Vitturi M; Scarlato P; Andronico D; Scollo S; Kueppers U; Ricci T Sci Rep; 2017 Jan; 7():39620. PubMed ID: 28045056 [TBL] [Abstract][Full Text] [Related]
10. Development of a two-dimensional analytical model for predicting toxic sediment plumes due to environmental dredging operations. Je CH; Hayes DF J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(8):1935-47. PubMed ID: 15332660 [TBL] [Abstract][Full Text] [Related]
11. Settling velocity of atmospheric particles in seawater: Based on hydrostatic sedimentation method using video imaging techniques. Wang S; Gao H; Jia S; Gu M; Shi F; Yao X Mar Pollut Bull; 2024 Jun; 203():116472. PubMed ID: 38728955 [TBL] [Abstract][Full Text] [Related]
12. Settling velocity of submillimeter microplastic fibers in still water. Dai C; Yuan F; Wang D; Yang X; Du J; Yu W; Zhang C Sci Total Environ; 2024 Jan; 907():168054. PubMed ID: 37898197 [TBL] [Abstract][Full Text] [Related]
13. Release of particles and metals into seawater following sediment resuspension of a coastal mine tailings disposal off Portmán Bay, Southern Spain. Bourrin F; Uusõue M; Artigas MC; Sànchez-Vidal A; Aubert D; Menniti C; Klar J; Environ Sci Pollut Res Int; 2021 Sep; 28(35):47973-47990. PubMed ID: 33899144 [TBL] [Abstract][Full Text] [Related]
14. Nonintrusive investigation of large Al-kaolin fractal aggregates with slow settling velocities. Moruzzi RB; Campos LC; Sharifi S; da Silva PG; Gregory J Water Res; 2020 Oct; 185():116287. PubMed ID: 32810744 [TBL] [Abstract][Full Text] [Related]
15. Towards better predicting the settling velocity of film-shaped microplastics based on experiment and simulation data. Ji C; Zhang J; Liu G; Zhang Q; Xing E Mar Pollut Bull; 2024 Jun; 203():116493. PubMed ID: 38759468 [TBL] [Abstract][Full Text] [Related]
16. Improved Settling Velocity for Microplastic Fibers: A New Shape-Dependent Drag Model. Zhang J; Choi CE Environ Sci Technol; 2022 Jan; 56(2):962-973. PubMed ID: 34963046 [TBL] [Abstract][Full Text] [Related]
17. Deciphering the Complex Chemistry of Deep-Ocean Particles Using Complementary Synchrotron X-ray Microscope and Microprobe Instruments. Toner BM; German CR; Dick GJ; Breier JA Acc Chem Res; 2016 Jan; 49(1):128-37. PubMed ID: 26636984 [TBL] [Abstract][Full Text] [Related]
18. Submarine tailings placement by a copper mine in the deep anoxic zone of the Black Sea. Berkun M Water Res; 2005 Dec; 39(20):5005-16. PubMed ID: 16289233 [TBL] [Abstract][Full Text] [Related]
19. CFD of the diffusion movement and concentration distribution of culinary particles in the respiratory zone of restaurant diners. Wang X; Liu S; Yang M; Zhao JC; Li T Heliyon; 2024 Jul; 10(13):e33610. PubMed ID: 39027523 [TBL] [Abstract][Full Text] [Related]
20. Climate change considerations are fundamental to management of deep-sea resource extraction. Levin LA; Wei CL; Dunn DC; Amon DJ; Ashford OS; Cheung WWL; Colaço A; Dominguez-Carrió C; Escobar EG; Harden-Davies HR; Drazen JC; Ismail K; Jones DOB; Johnson DE; Le JT; Lejzerowicz F; Mitarai S; Morato T; Mulsow S; Snelgrove PVR; Sweetman AK; Yasuhara M Glob Chang Biol; 2020 Sep; 26(9):4664-4678. PubMed ID: 32531093 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]