These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38691388)

  • 1. Rich essential properties of silicon-substituted graphene nanoribbons: a comprehensive computational study.
    Hoat DM; Dien VK; Ho QD; Dam DP; Tien NT; Nguyen DK
    Phys Chem Chem Phys; 2024 Jun; 26(22):15939-15956. PubMed ID: 38691388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spin gapless semiconductor-metal-half-metal properties in nitrogen-doped zigzag graphene nanoribbons.
    Li Y; Zhou Z; Shen P; Chen Z
    ACS Nano; 2009 Jul; 3(7):1952-8. PubMed ID: 19555066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of layer stacking on the electronic structure of graphene nanoribbons.
    Kharche N; Zhou Y; O'Brien KP; Kar S; Nayak SK
    ACS Nano; 2011 Aug; 5(8):6096-101. PubMed ID: 21766785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bandgap engineering of zigzag graphene nanoribbons by manipulating edge states via defective boundaries.
    Zhang A; Wu Y; Ke SH; Feng YP; Zhang C
    Nanotechnology; 2011 Oct; 22(43):435702. PubMed ID: 21967829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uniform and perfectly linear current-voltage characteristics of nitrogen-doped armchair graphene nanoribbons for nanowires.
    Liu L; Li XF; Yan Q; Li QK; Zhang XH; Deng M; Qiu Q; Luo Y
    Phys Chem Chem Phys; 2016 Dec; 19(1):44-48. PubMed ID: 27918024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of
    Davoudiniya M; Yang B; Sanyal B
    Phys Chem Chem Phys; 2024 Jan; 26(3):1936-1949. PubMed ID: 38116600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Configuration-dependent electronic and magnetic properties of graphene monolayers and nanoribbons functionalized with aryl groups.
    Tian X; Gu J; Xu JB
    J Chem Phys; 2014 Jan; 140(4):044712. PubMed ID: 25669572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic, Electronic, and Optical Studies of Gd-Doped WO
    Bahadur A; Anjum TA; Roosh M; Iqbal S; Alrbyawi H; Qayyum MA; Ahmad Z; Al-Anazy MM; Elkaeed EB; Pashameah RA; Alzahrani E; Farouk AE
    Molecules; 2022 Oct; 27(20):. PubMed ID: 36296569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rich essential properties of Si-doped graphene.
    Nguyen DK; Tran NTT; Chiu YH; Gumbs G; Lin MF
    Sci Rep; 2020 Jul; 10(1):12051. PubMed ID: 32694799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic and magnetic properties of pristine and chemically functionalized germanene nanoribbons.
    Pang Q; Zhang Y; Zhang JM; Ji V; Xu KW
    Nanoscale; 2011 Oct; 3(10):4330-8. PubMed ID: 21897985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Realizing semiconductor-half-metal transition in zigzag graphene nanoribbons supported on hybrid fluorographene-graphane nanoribbons.
    Tang S; Cao X
    Phys Chem Chem Phys; 2014 Nov; 16(42):23214-23. PubMed ID: 25254929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring Spin Distribution and Electronic Properties in FeN
    Oguz IC; Jaouen F; Mineva T
    Molecules; 2024 Jan; 29(2):. PubMed ID: 38257393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic and magnetic properties of armchair graphene nanoribbons with 558 grain boundary.
    Dai QQ; Zhu YF; Jiang Q
    Phys Chem Chem Phys; 2014 Jun; 16(22):10607-13. PubMed ID: 24752487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons.
    Blackwell RE; Zhao F; Brooks E; Zhu J; Piskun I; Wang S; Delgado A; Lee YL; Louie SG; Fischer FR
    Nature; 2021 Dec; 600(7890):647-652. PubMed ID: 34937899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of electronic and magnetic properties in InSe nanoribbons: edge effect.
    Wu M; Shi JJ; Zhang M; Ding YM; Wang H; Cen YL; Guo WH; Pan SH; Zhu YH
    Nanotechnology; 2018 May; 29(20):205708. PubMed ID: 29504514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic structure and transport properties of N2(AA)-doped armchair and zigzag graphene nanoribbons.
    Owens JR; Cruz-Silva E; Meunier V
    Nanotechnology; 2013 Jun; 24(23):235701. PubMed ID: 23669134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boron-doped armchair germanene nanoribbons with a width of six atoms in an external field: a DFT study.
    Van Ngoc H; Trang TQ; Ha CV
    J Mol Model; 2022 Dec; 29(1):20. PubMed ID: 36565375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First-principles study of the triwing graphene nanoribbons: junction-dependent electronic structures and electric field modulations.
    Ding Y; Wang Y
    Phys Chem Chem Phys; 2012 Feb; 14(6):2040-9. PubMed ID: 22234604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The dimensional and hydrogenating effect on the electronic properties of ZnSe nanomaterials: a computational investigation.
    Lv X; Li F; Gong J; Chen Z
    Phys Chem Chem Phys; 2018 Oct; 20(37):24453-24464. PubMed ID: 30221293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.