These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

552 related articles for article (PubMed ID: 38691403)

  • 1. Machine Learning for Predicting Risk and Prognosis of Acute Kidney Disease in Critically Ill Elderly Patients During Hospitalization: Internet-Based and Interpretable Model Study.
    Li M; Han S; Liang F; Hu C; Zhang B; Hou Q; Zhao S
    J Med Internet Res; 2024 May; 26():e51354. PubMed ID: 38691403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and deployment of interpretable machine-learning model for predicting in-hospital mortality in elderly patients with acute kidney disease.
    Li M; Zhuang Q; Zhao S; Huang L; Hu C; Zhang B; Hou Q
    Ren Fail; 2022 Dec; 44(1):1886-1896. PubMed ID: 36341895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Personalized Prediction of Long-Term Renal Function Prognosis Following Nephrectomy Using Interpretable Machine Learning Algorithms: Case-Control Study.
    Xu L; Li C; Gao S; Zhao L; Guan C; Shen X; Zhu Z; Guo C; Zhang L; Yang C; Bu Q; Zhou B; Xu Y
    JMIR Med Inform; 2024 Sep; 12():e52837. PubMed ID: 39303280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction and evaluation of a mortality prediction model for patients with acute kidney injury undergoing continuous renal replacement therapy based on machine learning algorithms.
    Wang Y; Sun X; Lu J; Zhong L; Yang Z
    Ann Med; 2024 Dec; 56(1):2388709. PubMed ID: 39155811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning-based risk prediction of acute kidney disease and hospital mortality in older patients.
    Wang X; Xu L; Guan C; Xu D; Che L; Wang Y; Man X; Li C; Xu Y
    Front Med (Lausanne); 2024; 11():1407354. PubMed ID: 39211338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction and validation of prognostic models in critically Ill patients with sepsis-associated acute kidney injury: interpretable machine learning approach.
    Fan Z; Jiang J; Xiao C; Chen Y; Xia Q; Wang J; Fang M; Wu Z; Chen F
    J Transl Med; 2023 Jun; 21(1):406. PubMed ID: 37349774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine Learning-Based Prediction of Acute Kidney Injury Following Pediatric Cardiac Surgery: Model Development and Validation Study.
    Luo XQ; Kang YX; Duan SB; Yan P; Song GB; Zhang NY; Yang SK; Li JX; Zhang H
    J Med Internet Res; 2023 Jan; 25():e41142. PubMed ID: 36603200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AKIML
    Sun T; Yue X; Zhang G; Lin Q; Chen X; Huang T; Li X; Liu W; Tao Z
    Clin Chim Acta; 2024 Jun; 559():119705. PubMed ID: 38702035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning derived serum creatinine trajectories in acute kidney injury in critically ill patients with sepsis.
    Takkavatakarn K; Oh W; Chan L; Hofer I; Shawwa K; Kraft M; Shah N; Kohli-Seth R; Nadkarni GN; Sakhuja A
    Crit Care; 2024 May; 28(1):156. PubMed ID: 38730421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interpretable machine learning for 28-day all-cause in-hospital mortality prediction in critically ill patients with heart failure combined with hypertension: A retrospective cohort study based on medical information mart for intensive care database-IV and eICU databases.
    Peng S; Huang J; Liu X; Deng J; Sun C; Tang J; Chen H; Cao W; Wang W; Duan X; Luo X; Peng S
    Front Cardiovasc Med; 2022; 9():994359. PubMed ID: 36312291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning-based prediction of in-hospital mortality for critically ill patients with sepsis-associated acute kidney injury.
    Gao T; Nong Z; Luo Y; Mo M; Chen Z; Yang Z; Pan L
    Ren Fail; 2024 Dec; 46(1):2316267. PubMed ID: 38369749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of Mortality and Major Adverse Kidney Events in Critically Ill Patients With Acute Kidney Injury.
    Neyra JA; Ortiz-Soriano V; Liu LJ; Smith TD; Li X; Xie D; Adams-Huet B; Moe OW; Toto RD; Chen J
    Am J Kidney Dis; 2023 Jan; 81(1):36-47. PubMed ID: 35868537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning for the prediction of all-cause mortality in patients with sepsis-associated acute kidney injury during hospitalization.
    Zhou H; Liu L; Zhao Q; Jin X; Peng Z; Wang W; Huang L; Xie Y; Xu H; Tao L; Xiao X; Nie W; Liu F; Li L; Yuan Q
    Front Immunol; 2023; 14():1140755. PubMed ID: 37077912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting sepsis in-hospital mortality with machine learning: a multi-center study using clinical and inflammatory biomarkers.
    Zhang G; Shao F; Yuan W; Wu J; Qi X; Gao J; Shao R; Tang Z; Wang T
    Eur J Med Res; 2024 Mar; 29(1):156. PubMed ID: 38448999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and Validation of an Explainable Machine Learning Model for Predicting Myocardial Injury After Noncardiac Surgery in Two Centers in China: Retrospective Study.
    Liu C; Zhang K; Yang X; Meng B; Lou J; Liu Y; Cao J; Liu K; Mi W; Li H
    JMIR Aging; 2024 Jul; 7():e54872. PubMed ID: 39087583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interpretable machine learning model for early prediction of 28-day mortality in ICU patients with sepsis-induced coagulopathy: development and validation.
    Zhou S; Lu Z; Liu Y; Wang M; Zhou W; Cui X; Zhang J; Xiao W; Hua T; Zhu H; Yang M
    Eur J Med Res; 2024 Jan; 29(1):14. PubMed ID: 38172962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Establishment and external validation of an online dynamic nomogram for predicting in-hospital death risk in sepsis-associated acute kidney disease.
    Li M; Zhao S; Huang L; Hu C; Zhang B; Hou Q
    Curr Med Res Opin; 2022 Oct; 38(10):1705-1713. PubMed ID: 35856713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Illness severity assessment of older adults in critical illness using machine learning (ELDER-ICU): an international multicentre study with subgroup bias evaluation.
    Liu X; Hu P; Yeung W; Zhang Z; Ho V; Liu C; Dumontier C; Thoral PJ; Mao Z; Cao D; Mark RG; Zhang Z; Feng M; Li D; Celi LA
    Lancet Digit Health; 2023 Oct; 5(10):e657-e667. PubMed ID: 37599147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of Machine Learning to Predict Acute Kidney Disease in Patients With Sepsis Associated Acute Kidney Injury.
    He J; Lin J; Duan M
    Front Med (Lausanne); 2021; 8():792974. PubMed ID: 34957162
    [No Abstract]   [Full Text] [Related]  

  • 20. Early prediction of mortality at sepsis diagnosis time in critically ill patients by using interpretable machine learning.
    Cheng YW; Kuo PC; Chen SH; Kuo YT; Liu TL; Chan WS; Chan KC; Yeh YC
    J Clin Monit Comput; 2024 Apr; 38(2):271-279. PubMed ID: 38150124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.