These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 38691532)
1. Different descending pathways mediate early and late portions of lower limb responses to transcranial magnetic stimulation. Shemmell J; Falling C; MacKinnon CD; Stapley PJ; Ribeiro DC; Stinear JW J Neurophysiol; 2024 Jun; 131(6):1299-1310. PubMed ID: 38691532 [TBL] [Abstract][Full Text] [Related]
2. Postural support requirements preferentially modulate late components of the gastrocnemius response to transcranial magnetic stimulation. Russell C; Difford N; Stamenkovic A; Stapley P; McAndrew D; Arpel C; MacKinnon C; Shemmell J Exp Brain Res; 2022 Oct; 240(10):2647-2657. PubMed ID: 36006434 [TBL] [Abstract][Full Text] [Related]
3. Inhibitory influence of the ipsilateral motor cortex on responses to stimulation of the human cortex and pyramidal tract. Gerloff C; Cohen LG; Floeter MK; Chen R; Corwell B; Hallett M J Physiol; 1998 Jul; 510 ( Pt 1)(Pt 1):249-59. PubMed ID: 9625881 [TBL] [Abstract][Full Text] [Related]
4. Convergence of flexor reflex and corticospinal inputs on tibialis anterior network in humans. Mackey AS; Uttaro D; McDonough MP; Krivis LI; Knikou M Clin Neurophysiol; 2016 Jan; 127(1):706-715. PubMed ID: 26122072 [TBL] [Abstract][Full Text] [Related]
5. High-intensity, low-frequency repetitive transcranial magnetic stimulation enhances excitability of the human corticospinal pathway. D'Amico JM; Dongés SC; Taylor JL J Neurophysiol; 2020 May; 123(5):1969-1978. PubMed ID: 32292098 [TBL] [Abstract][Full Text] [Related]
6. Modulation of transmission in the corticospinal and group Ia afferent pathways to soleus motoneurons during bicycling. Pyndt HS; Nielsen JB J Neurophysiol; 2003 Jan; 89(1):304-14. PubMed ID: 12522181 [TBL] [Abstract][Full Text] [Related]
7. Spinal inhibition of descending command to soleus motoneurons is removed prior to dorsiflexion. Geertsen SS; van de Ruit M; Grey MJ; Nielsen JB J Physiol; 2011 Dec; 589(Pt 23):5819-31. PubMed ID: 21986208 [TBL] [Abstract][Full Text] [Related]
8. Multipulse transcranial magnetic stimulation of human motor cortex produces short-latency corticomotor facilitation via two distinct mechanisms. Kesselheim J; Takemi M; Christiansen L; Karabanov AN; Siebner HR J Neurophysiol; 2023 Feb; 129(2):410-420. PubMed ID: 36629338 [TBL] [Abstract][Full Text] [Related]
9. Mechanisms underlying long-interval cortical inhibition in the human motor cortex: a TMS-EEG study. Rogasch NC; Daskalakis ZJ; Fitzgerald PB J Neurophysiol; 2013 Jan; 109(1):89-98. PubMed ID: 23100139 [TBL] [Abstract][Full Text] [Related]
10. Repetition suppression in transcranial magnetic stimulation-induced motor-evoked potentials is modulated by cortical inhibition. Kallioniemi E; Pääkkönen A; Julkunen P Neuroscience; 2015 Dec; 310():504-11. PubMed ID: 26427962 [TBL] [Abstract][Full Text] [Related]
11. Origin of facilitation of motor-evoked potentials after paired magnetic stimulation: direct recording of epidural activity in conscious humans. Di Lazzaro V; Pilato F; Oliviero A; Dileone M; Saturno E; Mazzone P; Insola A; Profice P; Ranieri F; Capone F; Tonali PA; Rothwell JC J Neurophysiol; 2006 Oct; 96(4):1765-71. PubMed ID: 16760345 [TBL] [Abstract][Full Text] [Related]
12. Spread of electrical activity at cortical level after repetitive magnetic stimulation in normal subjects. Lorenzano C; Gilio F; Inghilleri M; Conte A; Fofi L; Manfredi M; Berardelli A Exp Brain Res; 2002 Nov; 147(2):186-92. PubMed ID: 12410333 [TBL] [Abstract][Full Text] [Related]
13. Cortico-cortical and motor evoked potentials to single and paired-pulse stimuli: An exploratory transcranial magnetic and intracranial electric brain stimulation study. Boulogne S; Andre-Obadia N; Kimiskidis VK; Ryvlin P; Rheims S Hum Brain Mapp; 2016 Nov; 37(11):3767-3778. PubMed ID: 27312488 [TBL] [Abstract][Full Text] [Related]
14. Peripheral sensory activation of cortical circuits in the leg motor cortex of man. Roy FD; Gorassini MA J Physiol; 2008 Sep; 586(17):4091-105. PubMed ID: 18599540 [TBL] [Abstract][Full Text] [Related]
15. Effects of low-frequency whole-body vibration on motor-evoked potentials in healthy men. Mileva KN; Bowtell JL; Kossev AR Exp Physiol; 2009 Jan; 94(1):103-16. PubMed ID: 18658234 [TBL] [Abstract][Full Text] [Related]
16. Independent modulation of corticospinal and group I afferents pathways during upright standing. Baudry S; Duchateau J Neuroscience; 2014 Sep; 275():162-9. PubMed ID: 24952331 [TBL] [Abstract][Full Text] [Related]
17. Task-dependent changes of corticospinal excitability during observation and motor imagery of balance tasks. Mouthon A; Ruffieux J; Wälchli M; Keller M; Taube W Neuroscience; 2015 Sep; 303():535-43. PubMed ID: 26192097 [TBL] [Abstract][Full Text] [Related]
18. Interlimb neural interactions in corticospinal and spinal reflex circuits during preparation and execution of isometric elbow flexion. Sasaki A; Kaneko N; Masugi Y; Milosevic M; Nakazawa K J Neurophysiol; 2020 Sep; 124(3):652-667. PubMed ID: 32697605 [TBL] [Abstract][Full Text] [Related]
19. Agonist-Antagonist Coactivation Enhances Corticomotor Excitability of Ankle Muscles. Kesar TM; Tan A; Eicholtz S; Baker K; Xu J; Anderson JT; Wolf SL; Borich MR Neural Plast; 2019; 2019():5190671. PubMed ID: 31565049 [TBL] [Abstract][Full Text] [Related]
20. Conditioning the cortical silent period with paired transcranial magnetic stimulation. Silbert BI; Thickbroom GW Brain Stimul; 2013 Jul; 6(4):541-4. PubMed ID: 23092703 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]