BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 38691587)

  • 1. Engineered polymer nanoparticles as artificial chaperones facilitating the selective refolding of denatured enzymes.
    Li Y; Yin D; Lee SY; Lv Y
    Proc Natl Acad Sci U S A; 2024 May; 121(19):e2403049121. PubMed ID: 38691587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic Nanochaperones Facilitate Refolding of Denatured Proteins.
    Ma FH; An Y; Wang J; Song Y; Liu Y; Shi L
    ACS Nano; 2017 Oct; 11(10):10549-10557. PubMed ID: 28968070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of Synthetic Polymer Nanoparticles That Facilitate Resolubilization and Refolding of Aggregated Positively Charged Lysozyme.
    Nakamoto M; Nonaka T; Shea KJ; Miura Y; Hoshino Y
    J Am Chem Soc; 2016 Apr; 138(13):4282-5. PubMed ID: 26891855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic comparison of artificial-chaperone-assisted and unassisted refolding of urea-denatured carbonic anhydrase B.
    Hanson PE; Gellman SH
    Fold Des; 1998; 3(6):457-68. PubMed ID: 9889157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-Assembly Nanochaperone with Tunable Hydrophilic-Hydrophobic Surface for Controlled Protein Refolding.
    Zhao S; Song Y; Xu L; Hu H; Wang J; Huang F; Shi L
    Macromol Biosci; 2023 Nov; 23(11):e2300205. PubMed ID: 37463112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recyclable chaperone-conjugated magnetic beads for in vitro refolding of Burkholderia cepacia lipase.
    Jung S; Park S
    Biotechnol Lett; 2009 Jan; 31(1):107-11. PubMed ID: 18791662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydroimidazolone modification of human alphaA-crystallin: Effect on the chaperone function and protein refolding ability.
    Gangadhariah MH; Wang B; Linetsky M; Henning C; Spanneberg R; Glomb MA; Nagaraj RH
    Biochim Biophys Acta; 2010 Apr; 1802(4):432-41. PubMed ID: 20085807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of the Surface Charge of Artificial Chaperones on the Refolding of Thermally Denatured Lysozymes.
    Huang F; Shen L; Wang J; Qu A; Yang H; Zhang Z; An Y; Shi L
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):3669-78. PubMed ID: 26570996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial chaperone-assisted refolding of chemically denatured alpha-amylase.
    Yazdanparast R; Khodagholi F; Khodarahmi R
    Int J Biol Macromol; 2005 Jun; 35(5):257-63. PubMed ID: 15862864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative refolding of guanidinium hydrochloride denatured bovine serum albumin assisted by cationic and anionic surfactants via artificial chaperone protocol: Biophysical insight.
    Ishtikhar M; Siddiqui Z; Husain FM; Khan RA; Hassan I
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jan; 225():117510. PubMed ID: 31520999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial chaperone-assisted refolding of denatured-reduced lysozyme: modulation of the competition between renaturation and aggregation.
    Rozema D; Gellman SH
    Biochemistry; 1996 Dec; 35(49):15760-71. PubMed ID: 8961939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chaperones rescue luciferase folding by separating its domains.
    Scholl ZN; Yang W; Marszalek PE
    J Biol Chem; 2014 Oct; 289(41):28607-18. PubMed ID: 25160632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chaperone-assisted refolding of Escherichia coli maltodextrin glucosidase.
    Paul S; Punam S; Chaudhuri TK
    FEBS J; 2007 Nov; 274(22):6000-10. PubMed ID: 17983358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible Interactions of Proteins with Mixed Shell Polymeric Micelles: Tuning the Surface Hydrophobic/Hydrophilic Balance toward Efficient Artificial Chaperones.
    Wang J; Song Y; Sun P; An Y; Zhang Z; Shi L
    Langmuir; 2016 Mar; 32(11):2737-49. PubMed ID: 26948309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Refolding of denatured/reduced lysozyme at high concentrations by artificial molecular chaperone-ion exchange chromatography.
    Wang C; Zhang Q; Cheng Y; Wang L
    Biotechnol Prog; 2010; 26(4):1073-9. PubMed ID: 20730764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Refolding of bovine serum albumin via artificial chaperone protocol using gemini surfactants.
    Gull N; Mir MA; Khan JM; Khan RH; Rather GM; Dar AA
    J Colloid Interface Sci; 2011 Dec; 364(1):157-62. PubMed ID: 21889159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cycloamylose as an efficient artificial chaperone for protein refolding.
    Machida S; Ogawa S; Xiaohua S; Takaha T; Fujii K; Hayashi K
    FEBS Lett; 2000 Dec; 486(2):131-5. PubMed ID: 11113453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of Ionic Liquid-Assisted Refolding of Denatured Cytochrome c: A Study of Preferential Interactions toward Renaturation.
    Singh UK; Patel R
    Mol Pharm; 2018 Jul; 15(7):2684-2697. PubMed ID: 29767978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative studies of the artificial chaperone-assisted refolding of thermally denatured bovine carbonic anhydrase using different capturing ionic detergents and beta-cyclodextrin.
    Yazdanparast R; Khodarahmi R; Soori E
    Arch Biochem Biophys; 2005 May; 437(2):178-85. PubMed ID: 15850557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solid-phase artificial chaperone-assisted refolding using insoluble beta-cyclodextrin-acrylamide copolymer beads.
    Yamaguchi S; Hong C; Mannen T; Tsukiji S; Nagamune T
    Biotechnol Lett; 2004 Dec; 26(23):1787-91. PubMed ID: 15672215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.