These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Terahertz narrowband filter metasurfaces based on bound states in the continuum. Liu Y; Zhang Q; Xing X; Zou D; Mao B; Yao J; Ouyang C; Wang Z; Wu L Opt Express; 2023 Oct; 31(21):35272-35281. PubMed ID: 37859262 [TBL] [Abstract][Full Text] [Related]
43. TUNABLE RING LASER BASED ON A SEMICONDUCTOR OPTICAL AMPLIFIER AT 1300 NM USING A SIMPLE WAVELENGTH SELECTION FILTER. Jeon M; Kim J; Song JW; Lee H; Choi S; Nelson JS Microw Opt Technol Lett; 2008 May; 50(5):1317-1320. PubMed ID: 20539831 [TBL] [Abstract][Full Text] [Related]
44. High rejection bandpass optical filters based on sub-wavelength metal patch arrays. Le Perchec J; de Lamaestre RE; Brun M; Rochat N; Gravrand O; Badano G; Hazart J; Nicoletti S Opt Express; 2011 Aug; 19(17):15720-31. PubMed ID: 21934934 [TBL] [Abstract][Full Text] [Related]
45. Tunable and switchable dual-wavelength single polarization narrow linewidth SLM erbium-doped fiber laser based on a PM-CMFBG filter. Yin B; Feng S; Liu Z; Bai Y; Jian S Opt Express; 2014 Sep; 22(19):22528-33. PubMed ID: 25321722 [TBL] [Abstract][Full Text] [Related]
46. Polarization-maintaining all-fiber tunable mode-locked laser based on a thermally controlled Lyot filter. Sun X; Zhu Y; Jin L; Yamashita S; Set SY Opt Lett; 2022 Oct; 47(19):4913-4916. PubMed ID: 36181149 [TBL] [Abstract][Full Text] [Related]
47. Online Testing Method for the Fine Spectral Characteristics of Narrow-Band Interference Filters Based on a Narrow-Linewidth Tunable Laser. Ji K; Yang Y; Lin X; Liang J; Ji K; Wang J; Liu L; Chen Z; Wang W; Cheng X; Li F Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400310 [TBL] [Abstract][Full Text] [Related]
48. Polymeric tunable wavelength filter with two-stage cascaded tilted Bragg gratings. Park TH; Kim SM; Oh MC Opt Express; 2020 Mar; 28(7):10145-10152. PubMed ID: 32225606 [TBL] [Abstract][Full Text] [Related]
49. Ultranarrow-band filterless photodetectors based on CH Lu C; Zhou J; Tang C; Dai Q; Peng Y; Lv W; Sun L; Xu S; Hu W Nanotechnology; 2023 Jun; 34(34):. PubMed ID: 37236163 [TBL] [Abstract][Full Text] [Related]
50. Narrow bandpass tunable terahertz filter based on photonic crystal cavity. He J; Liu P; He Y; Hong Z Appl Opt; 2012 Feb; 51(6):776-9. PubMed ID: 22358169 [TBL] [Abstract][Full Text] [Related]
51. A solid-state optical filter at 1530 nm based on Voigt anomalous dispersion effect in rare earth ion-doped crystal. Wen K; Bai X; Zhao E; Liu S; Luo L Heliyon; 2023 Jun; 9(6):e16787. PubMed ID: 37292355 [TBL] [Abstract][Full Text] [Related]
52. Silicon nitride stress-optic microresonator modulator for optical control applications. Wang J; Liu K; Harrington MW; Rudy RQ; Blumenthal DJ Opt Express; 2022 Aug; 30(18):31816-31827. PubMed ID: 36242256 [TBL] [Abstract][Full Text] [Related]
53. Strain induced tunable wavelength filters based on flexible polymer waveguide Bragg reflector. Kim KJ; Seo JK; Oh MC Opt Express; 2008 Feb; 16(3):1423-30. PubMed ID: 18542216 [TBL] [Abstract][Full Text] [Related]
54. Thermally switchable and discretely tunable comb filter with a linearly chirped fiber Bragg grating. Ngo NQ; Liu D; Tjin SC; Dong X; Shum P Opt Lett; 2005 Nov; 30(22):2994-6. PubMed ID: 16315699 [TBL] [Abstract][Full Text] [Related]
55. Tunable coherence-free microwave photonic bandpass filter based on double cross gain modulation technique. Chan EH Opt Express; 2012 Oct; 20(21):22987-96. PubMed ID: 23188262 [TBL] [Abstract][Full Text] [Related]
57. Tunable photonic filters: a digital signal processing design approach. Binh le N Appl Opt; 2009 May; 48(15):2799-810. PubMed ID: 19458728 [TBL] [Abstract][Full Text] [Related]
58. Dynamic Color Generation with Electrically Tunable Thin Film Optical Coatings. Sreekanth KV; Medwal R; Srivastava YK; Manjappa M; Rawat RS; Singh R Nano Lett; 2021 Dec; 21(23):10070-10075. PubMed ID: 34802245 [TBL] [Abstract][Full Text] [Related]
59. Tunable optical filters with wide wavelength range based on porous multilayers. Mescheder U; Khazi I; Kovacs A; Ivanov A Nanoscale Res Lett; 2014; 9(1):427. PubMed ID: 25232293 [TBL] [Abstract][Full Text] [Related]
60. Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency. Lu H; Liu X; Wang G; Mao D Nanotechnology; 2012 Nov; 23(44):444003. PubMed ID: 23079958 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]