These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38691714)

  • 1. Programmable spin and transport of a living shrimp egg through photoacoustic pressure.
    Zhao X; Zhang R; Li J; Zhou D; Li F; Guo H
    Opt Lett; 2024 May; 49(9):2341-2344. PubMed ID: 38691714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Programmable photoacoustic manipulation of microparticles in liquid.
    Li J; Zhao X; Zhang R; Zhou D; Li F; Li Z; Guo H
    Opt Express; 2024 Apr; 32(9):16362-16370. PubMed ID: 38859265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Programmable photoacoustic patterning of microparticles in air.
    Zhang R; Zhao X; Li J; Zhou D; Guo H; Li ZY; Li F
    Nat Commun; 2024 Apr; 15(1):3250. PubMed ID: 38627385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ring-shaped photoacoustic tweezers for single particle manipulation.
    Zhao Z; Xia J; Huang TJ; Zou J
    Opt Lett; 2022 Feb; 47(4):826-829. PubMed ID: 35167535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Programmable motion control and trajectory manipulation of microparticles through tri-directional symmetrical acoustic tweezers.
    Wang Y; Pan H; Mei D; Xu C; Weng W
    Lab Chip; 2022 Mar; 22(6):1149-1161. PubMed ID: 35134105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optothermal Manipulations of Colloidal Particles and Living Cells.
    Lin L; Hill EH; Peng X; Zheng Y
    Acc Chem Res; 2018 Jun; 51(6):1465-1474. PubMed ID: 29799720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Acoustic Manipulation of Living Cells and Organisms Based On 2D Array.
    Yang Y; Ma T; Zhang Q; Huang J; Hu Q; Li Y; Wang C; Zheng H
    IEEE Trans Biomed Eng; 2022 Jul; 69(7):2342-2352. PubMed ID: 35025736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optofluidic Particle Manipulation: Optical Trapping in a Thin-Membrane Microchannel.
    Walker ZJ; Wells T; Belliston E; Walker SB; Zeller C; Sampad MJN; Saiduzzaman SM; Schmidt H; Hawkins AR
    Biosensors (Basel); 2022 Aug; 12(9):. PubMed ID: 36140075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional manipulation of single cells using surface acoustic waves.
    Guo F; Mao Z; Chen Y; Xie Z; Lata JP; Li P; Ren L; Liu J; Yang J; Dao M; Suresh S; Huang TJ
    Proc Natl Acad Sci U S A; 2016 Feb; 113(6):1522-7. PubMed ID: 26811444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Programmable Multimodal Optothermal Manipulation of Synthetic Particles and Biological Cells.
    Ding H; Chen Z; Kollipara PS; Liu Y; Kim Y; Huang S; Zheng Y
    ACS Nano; 2022 Jul; 16(7):10878-10889. PubMed ID: 35816157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation.
    Simmons CS; Knouf EC; Tewari M; Lin LY
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21988841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves.
    Ding X; Lin SC; Kiraly B; Yue H; Li S; Chiang IK; Shi J; Benkovic SJ; Huang TJ
    Proc Natl Acad Sci U S A; 2012 Jul; 109(28):11105-9. PubMed ID: 22733731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optoacoustic tweezers: a programmable, localized cell concentrator based on opto-thermally generated, acoustically activated, surface bubbles.
    Xie Y; Zhao C; Zhao Y; Li S; Rufo J; Yang S; Guo F; Huang TJ
    Lab Chip; 2013 May; 13(9):1772-1779. PubMed ID: 23511348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustic tweezers via sub-time-of-flight regime surface acoustic waves.
    Collins DJ; Devendran C; Ma Z; Ng JW; Neild A; Ai Y
    Sci Adv; 2016 Jul; 2(7):e1600089. PubMed ID: 27453940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pulse laser assisted optical tweezers for biomedical applications.
    Sugiura T; Maeda S; Honda A
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4479-81. PubMed ID: 23366922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soft-Contact Acoustic Microgripper Based on a Controllable Gas-Liquid Interface for Biomicromanipulations.
    Zhou Y; Liu J; Yan J; Guo S; Li T
    Small; 2021 Dec; 17(49):e2104579. PubMed ID: 34738717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patterned thin metal film for the lateral resolution measurement of photoacoustic tomography.
    Kim DH; Shin DH; Ryu SH; Song CG
    Biomed Eng Online; 2012 Jul; 11():37. PubMed ID: 22794510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An opto-thermal approach for rotating a trapped core-shell magnetic microparticle with patchy shell.
    Bai W; Shao M; Zhou J; Zhao Q; Ji F; Zhong MC
    Rev Sci Instrum; 2022 Aug; 93(8):084902. PubMed ID: 36050094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Axial acoustic radiation force of progressive cylindrical diverging waves on a rigid and a soft cylinder immersed in an ideal compressible fluid.
    Mitri FG; Fellah ZE
    Ultrasonics; 2011 Jul; 51(5):523-6. PubMed ID: 21339000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Erratum: Eyestalk Ablation to Increase Ovarian Maturation in Mud Crabs.
    J Vis Exp; 2023 May; (195):. PubMed ID: 37235796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.