These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 38691721)

  • 41. 60-nm-thick basic photonic components and Bragg gratings on the silicon-on-insulator platform.
    Zou Z; Zhou L; Li X; Chen J
    Opt Express; 2015 Aug; 23(16):20784-95. PubMed ID: 26367931
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rapid fabrication of a microfluidic device with integrated optical waveguides for DNA fragment analysis.
    Bliss CL; McMullin JN; Backhouse CJ
    Lab Chip; 2007 Oct; 7(10):1280-7. PubMed ID: 17896011
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Lithium niobate ridged waveguides with smooth vertical sidewalls fabricated by an ultra-precision cutting method.
    Takigawa R; Higurashi E; Kawanishi T; Asano T
    Opt Express; 2014 Nov; 22(22):27733-8. PubMed ID: 25401917
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Polymer waveguide backplanes for optical sensor interfaces in microfluidics.
    Lee KS; Lee HL; Ram RJ
    Lab Chip; 2007 Nov; 7(11):1539-45. PubMed ID: 17960283
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nonlinear silicon nitride waveguides based on a PECVD deposition platform.
    Wang L; Xie W; Van Thourhout D; Zhang Y; Yu H; Wang S
    Opt Express; 2018 Apr; 26(8):9645-9654. PubMed ID: 29715913
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Low-loss GeO(2) optical waveguide fabrication using low deposition rate rf sputtering.
    Yin ZY; Garside BK
    Appl Opt; 1982 Dec; 21(23):4324-8. PubMed ID: 20401063
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Thin-film lithium niobate-on-insulator waveguides fabricated on silicon wafer by room-temperature bonding method with silicon nanoadhesive layer.
    Takigawa R; Asano T
    Opt Express; 2018 Sep; 26(19):24413-24421. PubMed ID: 30469560
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fiber-coupled dielectric-loaded plasmonic waveguides.
    Gosciniak J; Volkov VS; Bozhevolnyi SI; Markey L; Massenot S; Dereux A
    Opt Express; 2010 Mar; 18(5):5314-9. PubMed ID: 20389544
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fabrication and inter-channel crosstalk analysis of polymer optical waveguides with W-shaped index profile for high-density optical interconnections.
    Hsu HH; Hirobe Y; Ishigure T
    Opt Express; 2011 Jul; 19(15):14018-30. PubMed ID: 21934763
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Compact and efficient three-mode (de)multiplexer based on horizontal polymer waveguide couplers.
    Zhang R; Deng C; Zhao J; Zhang F; Huang Y; Zhang X; Wang T
    Opt Express; 2022 Jan; 30(3):3632-3644. PubMed ID: 35209617
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fabrication and analysis of a low-loss in-fiber active polymer waveguide.
    Smith KH; Markos DJ; Ipson BL; Schultz SM; Selfridge RH; Barber JP; Campbell KJ; Monte TD; Dyott RB
    Appl Opt; 2004 Feb; 43(4):933-9. PubMed ID: 14960088
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Freeform three-dimensional embedded polymer waveguides enabled by external-diffusion assisted two-photon lithography.
    Duc Nguyen HH; Hollenbach U; Ostrzinski U; Pfeiffer K; Hengsbach S; Mohr J
    Appl Opt; 2016 Mar; 55(8):1906-12. PubMed ID: 26974781
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Low-loss curved waveguides in polymers written with a femtosecond laser.
    Pätzold WM; Demircan A; Morgner U
    Opt Express; 2017 Jan; 25(1):263-270. PubMed ID: 28085819
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Flexible thin-film polymer waveguides fabricated in an industrial roll-to-roll process.
    Bruck R; Muellner P; Kataeva N; Koeck A; Trassl S; Rinnerbauer V; Schmidegg K; Hainberger R
    Appl Opt; 2013 Jul; 52(19):4510-4. PubMed ID: 23842245
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Low-loss polymeric optical waveguides with large cores fabricated by hot embossing.
    Mizuno H; Sugihara O; Kaino T; Okamoto N; Hosino M
    Opt Lett; 2003 Dec; 28(23):2378-80. PubMed ID: 14680188
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Optical gain at 1.55 µm of Er(TMHD)
    Zhu J; Zhang B; Huang Y; Lv Z; Ying L; Mei Y; Zheng Z; Zhang D
    Opt Express; 2023 Feb; 31(4):5242-5256. PubMed ID: 36823810
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Low loss ridge waveguides in lithium niobate thin films by optical grade diamond blade dicing.
    Volk MF; Suntsov S; Rüter CE; Kip D
    Opt Express; 2016 Jan; 24(2):1386-91. PubMed ID: 26832519
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Integrated waveguide coupled ultralow-loss multimode waveguides based on silicon nitride resonators.
    Cui S; Yu Y; Cao K; Pan Z; Gao X; Zhang X
    Opt Express; 2024 Jan; 32(2):2179-2187. PubMed ID: 38297753
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Low-loss waveguides on Y-cut thin film lithium niobate: towards acousto-optic applications.
    Cai L; Mahmoud A; Piazza G
    Opt Express; 2019 Apr; 27(7):9794-9802. PubMed ID: 31045128
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fabrication of ultralow-loss Si/SiO(2) waveguides by roughness reduction.
    Lee KK; Lim DR; Kimerling LC; Shin J; Cerrina F
    Opt Lett; 2001 Dec; 26(23):1888-90. PubMed ID: 18059727
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.