These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 38691721)

  • 61. Study of the pedestal process for reducing sidewall scattering in photonic waveguides.
    Melo EG; Alayo MI; Carvalho DO
    Opt Express; 2017 May; 25(9):9755-9760. PubMed ID: 28468355
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Fabrication of thermally stable and cost-effective polymeric waveguide for optical printed-circuit board.
    Kim DW; Ahn SH; Cho IK; Im DM; Shorab Muslim SM; Park HH
    Opt Express; 2008 Oct; 16(21):16798-805. PubMed ID: 18852788
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides.
    Kim JT; Ju JJ; Park S; Kim MS; Park SK; Lee MH
    Opt Express; 2008 Aug; 16(17):13133-8. PubMed ID: 18711551
    [TBL] [Abstract][Full Text] [Related]  

  • 64. 90°-bent graded-index core polymer waveguide for a high-bandwidth-density VCSEL-based optical engine.
    Kohmu N; Ishii M; Hatai R; Ishigure T
    Opt Express; 2022 Jan; 30(3):4351-4364. PubMed ID: 35209673
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Influence of gold nanoparticles on the 1.53 µm optical gain in Er3+/Yb3+: PbO-GeO2 RIB waveguides.
    da Silva DM; Kassab LR; Siarkowski AL; de Araújo CB
    Opt Express; 2014 Jun; 22(13):16424-30. PubMed ID: 24977891
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Low-loss graded-index polymer crossed optical waveguide with high thermal resistance.
    Abe K; Oizumi Y; Ishigure T
    Opt Express; 2018 Feb; 26(4):4512-4521. PubMed ID: 29475301
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Multi-level single mode 2D polymer waveguide optical interconnects using nano-imprint lithography.
    Khan MU; Justice J; Petäjä J; Korhonen T; Boersma A; Wiegersma S; Karppinen M; Corbett B
    Opt Express; 2015 Jun; 23(11):14630-9. PubMed ID: 26072823
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Design and fabrication of As
    Fan Z; Yan K; Zhang L; Qin J; Chen J; Wang R; Shen X
    Appl Opt; 2020 Feb; 59(6):1564-1568. PubMed ID: 32225660
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Optical properties of epitaxial Ca
    Vigne S; Hossain N; Fesharaki F; Kabir SM; Margot J; Wu K; Chaker M
    Opt Express; 2016 Dec; 24(25):28573-28582. PubMed ID: 27958501
    [TBL] [Abstract][Full Text] [Related]  

  • 70. 3D integrated wavelength demultiplexer based on a square-core fiber and dual-layer arrayed waveguide gratings.
    Jiang X; Yang Z; Liu Z; Dang Z; Ding Z; Chang Q; Zhang Z
    Opt Express; 2021 Jan; 29(2):2090-2098. PubMed ID: 33726409
    [TBL] [Abstract][Full Text] [Related]  

  • 71. SOI-based trapezoidal waveguide with 45° microreflector for noncoplanar optical interconnect.
    Chang CC; Shen PK; Chen CT; Hsiao HL; Lan HC; Lee YC; Wu ML
    Opt Lett; 2012 Mar; 37(5):782-4. PubMed ID: 22378392
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Design of an ultra-compact low-crosstalk sinusoidal silicon waveguide array for optical phased array.
    Yi X; Zeng H; Gao S; Qiu C
    Opt Express; 2020 Dec; 28(25):37505-37513. PubMed ID: 33379583
    [TBL] [Abstract][Full Text] [Related]  

  • 73. GaN microring waveguide resonators bonded to silicon substrate by a two-step polymer process.
    Hashida R; Sasaki T; Hane K
    Appl Opt; 2018 Mar; 57(9):2073-2079. PubMed ID: 29603996
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Low-Loss Optical Waveguides for the Near Ultra-Violet and Visible Spectral Regions with Al(2)O(3) Thin Films from Atomic Layer Deposition.
    Aslan MM; Webster NA; Byard CL; Pereira MB; Hayes CM; Wiederkehr RS; Mendes SB
    Thin Solid Films; 2010 Jun; 518(17):4935-4940. PubMed ID: 21359156
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Single-mode low-loss chalcogenide glass waveguides for the mid-infrared.
    Hô N; Phillips MC; Qiao H; Allen PJ; Krishnaswami K; Riley BJ; Myers TL; Anheier NC
    Opt Lett; 2006 Jun; 31(12):1860-2. PubMed ID: 16729095
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Impact of LOCOS techniques on photonic wire waveguides.
    Xiong Y; Ibrahim M; Ye WN
    Appl Opt; 2012 Oct; 51(29):7089-93. PubMed ID: 23052089
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Low propagation loss of 0.76 dB/mm in GaAs-based single-line-defect two-dimensional photonic crystal slab waveguides up to 1 cm in length.
    Sugimoto Y; Tanaka Y; Ikeda N; Nakamura Y; Asakawa K; Inoue K
    Opt Express; 2004 Mar; 12(6):1090-6. PubMed ID: 19474926
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Accurate interchannel pitch control in graded-index circular-core polymer parallel optical waveguide using the Mosquito method.
    Kinoshita R; Suganuma D; Ishigure T
    Opt Express; 2014 Apr; 22(7):8426-37. PubMed ID: 24718216
    [TBL] [Abstract][Full Text] [Related]  

  • 79. High-confinement alumina waveguides with sub-dB/cm propagation losses at 450 nm.
    McKay E; Pruiti NG; May S; Sorel M
    Sci Rep; 2023 Nov; 13(1):19917. PubMed ID: 37963923
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Thermo-optic waveguide gate switch arrays based on direct UV-written highly fluorinated low-loss photopolymer.
    Niu X; Zheng Y; Gu Y; Chen C; Cai Z; Shi Z; Wang F; Sun X; Cui Z; Zhang D
    Appl Opt; 2014 Oct; 53(29):6698-705. PubMed ID: 25322371
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.