These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38691761)

  • 1. Unveiling Enhanced PEC Water Oxidation: Morphology Tuning and Interfacial Phase Change in α-Fe
    Huang X; Perera IP; Shubhashish S; Suib SL
    ACS Appl Mater Interfaces; 2024 May; 16(19):24712-24722. PubMed ID: 38691761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ growth of α-Fe
    Li C; Chen Z; Yuan W; Xu QH; Li CM
    Nanoscale; 2019 Jan; 11(3):1111-1122. PubMed ID: 30574647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous Enhancement of Charge Separation and Hole Transportation in a W:α-Fe
    Masoumi Z; Tayebi M; Kolaei M; Tayyebi A; Ryu H; Jang JI; Lee BK
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39215-39229. PubMed ID: 34374510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanotextured Spikes of α-Fe
    Hussain S; Tavakoli MM; Waleed A; Virk US; Yang S; Waseem A; Fan Z; Nadeem MA
    Langmuir; 2018 Mar; 34(12):3555-3564. PubMed ID: 29537275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineered Sn- and Mg-doped hematite photoanodes for efficient photoelectrochemical water oxidation.
    Cai J; Chen H; Liu C; Yin S; Li H; Xu L; Liu H; Xie Q
    Dalton Trans; 2020 Aug; 49(32):11282-11289. PubMed ID: 32760974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single Crystalline α-Fe
    Garg P; Mohapatra L; Poonia AK; Kushwaha AK; Adarsh KNVD; Deshpande U
    ACS Omega; 2023 Oct; 8(41):38607-38618. PubMed ID: 37867698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Core-shell hematite nanorods: a simple method to improve the charge transfer in the photoanode for photoelectrochemical water splitting.
    Gurudayal ; Chee PM; Boix PP; Ge H; Yanan F; Barber J; Wong LH
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6852-9. PubMed ID: 25790720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced photoelectrochemical water oxidation performance of a hematite photoanode by decorating with Au-Pt core-shell nanoparticles.
    Chen B; Fan W; Mao B; Shen H; Shi W
    Dalton Trans; 2017 Nov; 46(46):16050-16057. PubMed ID: 29119164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. C@SiNW/TiO2 core-shell nanoarrays with sandwiched carbon passivation layer as high efficiency photoelectrode for water splitting.
    Devarapalli RR; Debgupta J; Pillai VK; Shelke MV
    Sci Rep; 2014 May; 4():4897. PubMed ID: 24810865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constructing Fe2O3/TiO2 core-shell photoelectrodes for efficient photoelectrochemical water splitting.
    Wang M; Pyeon M; Gönüllü Y; Kaouk A; Shen S; Guo L; Mathur S
    Nanoscale; 2015 Jun; 7(22):10094-100. PubMed ID: 25980730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of CuFe
    Hussain S; Hussain S; Waleed A; Tavakoli MM; Wang Z; Yang S; Fan Z; Nadeem MA
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35315-35322. PubMed ID: 28027650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid Ce-Fe
    Wu J; Liu J; Jin L; Hu B; Liu W
    Inorg Chem; 2022 Aug; 61(32):12591-12598. PubMed ID: 35920803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interface Engineering of CoFe-LDH Modified Ti: α-Fe
    Chang Y; Han M; Ding Y; Wei H; Zhang D; Luo H; Li X; Yan X
    Nanomaterials (Basel); 2023 Sep; 13(18):. PubMed ID: 37764609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Performance of Photoelectrochemical Water Splitting with ITO@α-Fe2O3 Core-Shell Nanowire Array as Photoanode.
    Yang J; Bao C; Yu T; Hu Y; Luo W; Zhu W; Fu G; Li Z; Gao H; Li F; Zou Z
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26482-90. PubMed ID: 26565922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining Bulk/Surface Engineering of Hematite To Synergistically Improve Its Photoelectrochemical Water Splitting Performance.
    Yuan Y; Gu J; Ye KH; Chai Z; Yu X; Chen X; Zhao C; Zhang Y; Mai W
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16071-7. PubMed ID: 27275649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced Spatial Charge Separation in a Niobium and Tantalum Nitride Core-Shell Photoanode: In Situ Interface Bonding for Efficient Solar Water Splitting.
    Zhang B; Fan Z; Chen Y; Feng C; Li S; Li Y
    Angew Chem Int Ed Engl; 2023 Sep; 62(36):e202305123. PubMed ID: 37462518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical TiO2-CuInS2 core-shell nanoarrays for photoelectrochemical water splitting.
    Guo K; Liu Z; Han J; Liu Z; Li Y; Wang B; Cui T; Zhou C
    Phys Chem Chem Phys; 2014 Aug; 16(30):16204-13. PubMed ID: 24969515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface Rh-Boosted Photoelectrochemical Water Oxidation of α-Fe
    Kim YM; Hong Y; Hur K; Kim MS; Sung YM
    ACS Appl Mater Interfaces; 2023 Aug; 15(31):37290-37299. PubMed ID: 37489940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simple electrodeposition to synthesize a NiFeS
    Wang H; Zhang R; Li YY; Wang D; Lin Y; Xie T
    Dalton Trans; 2021 Nov; 50(43):15551-15557. PubMed ID: 34665188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of a TiO
    Lu H; Fang S; Hu J; Chen B; Zhao R; Li H; Li CM; Ye J
    ACS Omega; 2020 Aug; 5(31):19861-19867. PubMed ID: 32803082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.