These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 38691891)

  • 1. Targeting the cysteine biosynthesis pathway in microorganisms: Mechanism, structure, and drug discovery.
    Tao Y; Zheng D; Zou W; Guo T; Liao G; Zhou W
    Eur J Med Chem; 2024 May; 271():116461. PubMed ID: 38691891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leveraging structural information for the discovery of new drugs: computational methods.
    Nguyen TB; Wong SE; Lightstone FC
    Methods Mol Biol; 2012; 841():209-34. PubMed ID: 22222454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antimicrobial Activity of Diazenyl Derivatives: An Update.
    Kaur H; Narasimhan B
    Curr Top Med Chem; 2018; 18(1):3-21. PubMed ID: 29412106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial fatty acid biosynthesis: targets for antibacterial drug discovery.
    Campbell JW; Cronan JE
    Annu Rev Microbiol; 2001; 55():305-32. PubMed ID: 11544358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emerging bacterial enzyme targets.
    Su Z; Honek JF
    Curr Opin Investig Drugs; 2007 Feb; 8(2):140-9. PubMed ID: 17328230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of Shikimate Kinase and Type II Dehydroquinase for Antibiotic Discovery: Structure-Based Design and Simulation Studies.
    Gonzalez-Bello C
    Curr Top Med Chem; 2016; 16(9):960-77. PubMed ID: 26303426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combatting antimicrobial resistance via the cysteine biosynthesis pathway in bacterial pathogens.
    Hicks JL; Oldham KEA; McGarvie J; Walker EJ
    Biosci Rep; 2022 Oct; 42(10):. PubMed ID: 36148777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Folate biosynthesis pathway: mechanisms and insights into drug design for infectious diseases.
    Bertacine Dias MV; Santos JC; Libreros-Zúñiga GA; Ribeiro JA; Chavez-Pacheco SM
    Future Med Chem; 2018 Apr; 10(8):935-959. PubMed ID: 29629843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review on antimicrobial botanicals, phytochemicals and natural resistance modifying agents from Apocynaceae family: Possible therapeutic approaches against multidrug resistance in pathogenic microorganisms.
    Anand U; Nandy S; Mundhra A; Das N; Pandey DK; Dey A
    Drug Resist Updat; 2020 Jul; 51():100695. PubMed ID: 32442892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimized protocols for assessing libraries of poorly soluble sortase A inhibitors for antibacterial activity against medically-relevant bacteria, toxicity and enzyme inhibition.
    Alharthi S; Ziora ZM; Moyle PM
    Bioorg Med Chem; 2021 Dec; 52():116527. PubMed ID: 34839159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elucidating the Catalytic Power of Glutamate Racemase by Investigating a Series of Covalent Inhibitors.
    Vance NR; Witkin KR; Rooney PW; Li Y; Pope M; Spies MA
    ChemMedChem; 2018 Dec; 13(23):2514-2521. PubMed ID: 30264520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward Understanding the Chemistry and Biology of 1-Deoxy-d-xylulose 5-Phosphate (DXP) Synthase: A Unique Antimicrobial Target at the Heart of Bacterial Metabolism.
    Bartee D; Freel Meyers CL
    Acc Chem Res; 2018 Oct; 51(10):2546-2555. PubMed ID: 30203647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery and Characterization of the Antimetabolite Action of Thioacetamide-Linked 1,2,3-Triazoles as Disruptors of Cysteine Biosynthesis in Gram-Negative Bacteria.
    Wallace MJ; Dharuman S; Fernando DM; Reeve SM; Gee CT; Yao J; Griffith EC; Phelps GA; Wright WC; Elmore JM; Lee RB; Chen T; Lee RE
    ACS Infect Dis; 2020 Mar; 6(3):467-478. PubMed ID: 31887254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-Based Design of Inhibitors of the Crucial Cysteine Biosynthetic Pathway Enzyme O-Acetyl Serine Sulfhydrylase.
    Mazumder M; Gourinath S
    Curr Top Med Chem; 2016; 16(9):948-59. PubMed ID: 26303427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA replication proteins as potential targets for antimicrobials in drug-resistant bacterial pathogens.
    van Eijk E; Wittekoek B; Kuijper EJ; Smits WK
    J Antimicrob Chemother; 2017 May; 72(5):1275-1284. PubMed ID: 28073967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial protein targets: towards understanding and intervention.
    Denny PW
    Parasitology; 2018 Feb; 145(2):111-115. PubMed ID: 29143719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cysteine-rich mini-proteins in human biology.
    Lavergne V; Taft RJ; Alewood PF
    Curr Top Med Chem; 2012; 12(14):1514-33. PubMed ID: 22827521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibitors of the Cysteine Synthase CysM with Antibacterial Potency against Dormant Mycobacterium tuberculosis.
    Brunner K; Maric S; Reshma RS; Almqvist H; Seashore-Ludlow B; Gustavsson AL; Poyraz Ö; Yogeeswari P; Lundbäck T; Vallin M; Sriram D; Schnell R; Schneider G
    J Med Chem; 2016 Jul; 59(14):6848-59. PubMed ID: 27379713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel Antimicrobial 8-Hydroxyquinoline-Based Agents: Current Development, Structure-Activity Relationships, and Perspectives.
    Joaquim AR; Gionbelli MP; Gosmann G; Fuentefria AM; Lopes MS; Fernandes de Andrade S
    J Med Chem; 2021 Nov; 64(22):16349-16379. PubMed ID: 34779640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting the bacterial SOS response for new antimicrobial agents: drug targets, molecular mechanisms and inhibitors.
    Lanyon-Hogg T
    Future Med Chem; 2021 Jan; 13(2):143-155. PubMed ID: 33410707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.