These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 38692035)
1. The potential of enhanced phytoremediation to clean up multi-contaminated soil - insights from metatranscriptomics. Pacwa-Płociniczak M; Kumor A; Bukowczan M; Sinkkonen A; Roslund M; Płociniczak T Microbiol Res; 2024 Jul; 284():127738. PubMed ID: 38692035 [TBL] [Abstract][Full Text] [Related]
2. Analysis of the Genome of the Heavy Metal Resistant and Hydrocarbon-Degrading Rhizospheric Chlebek D; Płociniczak T; Gobetti S; Kumor A; Hupert-Kocurek K; Pacwa-Płociniczak M Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008639 [TBL] [Abstract][Full Text] [Related]
3. Meat and bone meal as a novel biostimulation agent in hydrocarbon contaminated soils. Liu X; Selonen V; Steffen K; Surakka M; Rantalainen AL; Romantschuk M; Sinkkonen A Chemosphere; 2019 Jun; 225():574-578. PubMed ID: 30901652 [TBL] [Abstract][Full Text] [Related]
4. Natural additives contribute to hydrocarbon and heavy metal co-contaminated soil remediation. Cavazzoli S; Selonen V; Rantalainen AL; Sinkkonen A; Romantschuk M; Squartini A Environ Pollut; 2022 Aug; 307():119569. PubMed ID: 35680061 [TBL] [Abstract][Full Text] [Related]
5. Coupling biostimulation and phytoremediation for the restoration of petroleum hydrocarbon-contaminated soil. Li J; Ma N; Hao B; Qin F; Zhang X Int J Phytoremediation; 2023; 25(6):706-716. PubMed ID: 35900160 [TBL] [Abstract][Full Text] [Related]
6. Serpentine endophytic bacterium Pseudomonas azotoformans ASS1 accelerates phytoremediation of soil metals under drought stress. Ma Y; Rajkumar M; Moreno A; Zhang C; Freitas H Chemosphere; 2017 Oct; 185():75-85. PubMed ID: 28686889 [TBL] [Abstract][Full Text] [Related]
8. Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. Agnello AC; Bagard M; van Hullebusch ED; Esposito G; Huguenot D Sci Total Environ; 2016 Sep; 563-564():693-703. PubMed ID: 26524994 [TBL] [Abstract][Full Text] [Related]
9. Application of Festuca arundinacea in phytoremediation of soils contaminated with Pb, Ni, Cd and petroleum hydrocarbons. Steliga T; Kluk D Ecotoxicol Environ Saf; 2020 May; 194():110409. PubMed ID: 32155481 [TBL] [Abstract][Full Text] [Related]
10. The inoculation method affects colonization and performance of bacterial inoculant strains in the phytoremediation of soil contaminated with diesel oil. Afzal M; Yousaf S; Reichenauer TG; Sessitsch A Int J Phytoremediation; 2012 Jan; 14(1):35-47. PubMed ID: 22567693 [TBL] [Abstract][Full Text] [Related]
11. Enhanced phytoremediation of petroleum-contaminated soil by biochar and urea. Liu Z; Li Z; Chen S; Zhou W J Hazard Mater; 2023 Jul; 453():131404. PubMed ID: 37080026 [TBL] [Abstract][Full Text] [Related]
12. A combined landfarming-phytoremediation method to enhance remediation of mixed persistent contaminants. Tehrani MRF; Besalatpour AA Environ Sci Pollut Res Int; 2024 May; 31(25):37163-37174. PubMed ID: 38767793 [TBL] [Abstract][Full Text] [Related]
13. Synergetic effects of microbial-phytoremediation reshape microbial communities and improve degradation of petroleum contaminants. Wang A; Fu W; Feng Y; Liu Z; Song D J Hazard Mater; 2022 May; 429():128396. PubMed ID: 35236043 [TBL] [Abstract][Full Text] [Related]
14. Effectiveness of the Zea mays-Streptomyces association for the phytoremediation of petroleum hydrocarbons impacted soils. Baoune H; Aparicio JD; Acuña A; El Hadj-Khelil AO; Sanchez L; Polti MA; Alvarez A Ecotoxicol Environ Saf; 2019 Nov; 184():109591. PubMed ID: 31514081 [TBL] [Abstract][Full Text] [Related]
15. Nutritional additives dominance in driving the bacterial communities succession and bioremediation of hydrocarbon and heavy metal contaminated soil microcosms. Cavazzoli S; Squartini A; Sinkkonen A; Romantschuk M; Rantalainen AL; Selonen V; Roslund MI Microbiol Res; 2023 May; 270():127343. PubMed ID: 36841130 [TBL] [Abstract][Full Text] [Related]
16. Comparative transcriptome analysis of Zea mays in response to petroleum hydrocarbon stress. Cevher-Keskin B; Selçukcan-Erol Ç; Yüksel B; Ertekin Ö; Yıldızhan Y; Onarıcı S; Kulen O; Memon AR Environ Sci Pollut Res Int; 2018 Nov; 25(32):32660-32674. PubMed ID: 30242659 [TBL] [Abstract][Full Text] [Related]
17. Phytoremediation of petroleum hydrocarbons in tropical coastal soils. II. Microbial response to plant roots and contaminant. Jones RK; Sun WH; Tang CS; Robert FM Environ Sci Pollut Res Int; 2004; 11(5):340-6. PubMed ID: 15506638 [TBL] [Abstract][Full Text] [Related]
18. The impact of lead co-contamination on ecotoxicity and the bacterial community during the bioremediation of total petroleum hydrocarbon-contaminated soils. Khudur LS; Shahsavari E; Webster GT; Nugegoda D; Ball AS Environ Pollut; 2019 Oct; 253():939-948. PubMed ID: 31351302 [TBL] [Abstract][Full Text] [Related]
19. Bioremediation and reclamation of soil contaminated with petroleum oil hydrocarbons by exogenously seeded bacterial consortium: a pilot-scale study. Mukherjee AK; Bordoloi NK Environ Sci Pollut Res Int; 2011 Mar; 18(3):471-8. PubMed ID: 20835890 [TBL] [Abstract][Full Text] [Related]
20. Effects of plant growth-promoting bacteria on EDTA-assisted phytostabilization of heavy metals in a contaminated calcareous soil. Hamidpour M; Nemati H; Abbaszadeh Dahaji P; Roosta HR Environ Geochem Health; 2020 Aug; 42(8):2535-2545. PubMed ID: 31583504 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]