These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38692213)

  • 21. Sparse representation for Lamb-wave-based damage detection using a dictionary algorithm.
    Wang W; Bao Y; Zhou W; Li H
    Ultrasonics; 2018 Jul; 87():48-58. PubMed ID: 29459270
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Damage Localization in Composite Plates Using Wavelet Transform and 2-D Convolutional Neural Networks.
    Azuara G; Ruiz M; Barrera E
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502715
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Damage Localization of Composites Based on Difference Signal and Lamb Wave Tomography.
    Su C; Jiang M; Liang J; Tian A; Sun L; Zhang L; Zhang F; Sui Q
    Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31947940
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A nonlinear ultrasonic SHM method for impact damage localisation in composite panels using a sparse array of piezoelectric PZT transducers.
    Andreades C; Malfense Fierro GP; Meo M
    Ultrasonics; 2020 Dec; 108():106181. PubMed ID: 32531613
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multi-feature Fusion and Damage Identification of Large Generator Stator Insulation Based on Lamb Wave Detection and SVM Method.
    Li R; Gu H; Hu B; She Z
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31470530
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CNN-LSTM Hybrid Model to Promote Signal Processing of Ultrasonic Guided Lamb Waves for Damage Detection in Metallic Pipelines.
    Shang L; Zhang Z; Tang F; Cao Q; Pan H; Lin Z
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631596
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Damage Localization on Composite Structures Based on the Delay-and-Sum Algorithm Using Simulation and Experimental Methods.
    Nzouatchoua CB; Bentahar M; Montresor S; Colin N; Le Cam V; Trottier C; Terrien N
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177588
    [TBL] [Abstract][Full Text] [Related]  

  • 28. New nonlinear ultrasonic method for material characterization: Codirectional shear horizontal guided wave mixing in plate.
    Shan S; Hasanian M; Cho H; Lissenden CJ; Cheng L
    Ultrasonics; 2019 Jul; 96():64-74. PubMed ID: 31055080
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evolutionary Strategy-Based Location Algorithm for High-Resolution Lamb Wave Defect Detection With Sparse Array.
    Chen H; Liu Z; Gong Y; Wu B; He C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Jun; 68(6):2277-2293. PubMed ID: 33600312
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An Inverse Approach of Damage Identification Using Lamb Wave Tomography.
    Liu Y; Zhou S; Ning H; Yan C; Hu N
    Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31083470
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Imaging of sub-surface defect in CFRP laminate using A
    Rabbi MS; Teramoto K; Ishibashi H; Roshid MM
    Ultrasonics; 2023 Jan; 127():106849. PubMed ID: 36137467
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of stacking sequence on scattering characteristics of the fundamental anti-symmetric Lamb wave at through holes in composite laminates.
    Veidt M; Ng CT
    J Acoust Soc Am; 2011 Mar; 129(3):1280-7. PubMed ID: 21428491
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Air-coupled ultrasonic investigation of multi-layered composite materials.
    Kazys R; Demcenko A; Zukauskas E; Mazeika L
    Ultrasonics; 2006 Dec; 44 Suppl 1():e819-22. PubMed ID: 16797664
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Real-time nondestructive evaluation of fiber composite laminates using low-frequency Lamb waves.
    Díaz Valdés SH; Soutis C
    J Acoust Soc Am; 2002 May; 111(5 Pt 1):2026-33. PubMed ID: 12051422
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of interfacial property of a two-layered plate using a nonlinear low-frequency Lamb wave approach.
    Chen H; Deng M; Gao G; Xu C; Hu N; Xiang Y
    Ultrasonics; 2022 Aug; 124():106741. PubMed ID: 35395495
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nonlinear elastic multi-path reciprocal method for damage localisation in composite materials.
    Boccardi S; Callá DB; Ciampa F; Meo M
    Ultrasonics; 2018 Jan; 82():239-245. PubMed ID: 28910666
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lamb Wave Based Structural Damage Detection Using Stationarity Tests.
    Dao PB; Staszewski WJ
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832225
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Damage Identification of Large Generator Stator Insulation Based on PZT Sensor Systems and Hybrid Features of Lamb Waves.
    Li R; Li H; Hu B
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30134539
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A flexible piezoelectric transducer design for efficient generation and reception of ultrasonic Lamb waves.
    Gachagan A; Hayward G; Banks R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Jul; 52(7):1175-82. PubMed ID: 16212257
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Lamb wave time-reversal field reconstruction method for damage detection with automatic focusing determination.
    Yu S; Fan C; Zhang M; Zhao Y
    Ultrasonics; 2023 Aug; 133():107030. PubMed ID: 37196575
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.